6. GRAVITY CURRENTS AND LAVA DOMES 6.1
1. High Reynolds number gravity currents have already been partially

discussed.
p-Dp Vv Fr= V/(gqh)“2 generally 1 equation
ngt) Q p = constant in 2 unknowns

L
How does the current spread with time? Can be partially determined by

force balance (H2, 1982)

two dimensional axisymmetric

volume conservation

order of magnitude constant
hL ~ éQ(tG) dte~ gt hR 2 ~ Qt®

a =0 constantvolumeand a=1 constant flux

total inertial force

Fi = p U, dxdydz ~pUZhw <— width Fi~pU’hR
~ poLwt* "2 ~pQRt* 2
if U~Lt! U~Rt?
buoyancy force
Fy= C?)dxdydz Fy~pgt’R
X

Wh 2/ 53

-~ pgecy, dx dy dz ~ (po?/ R®) e

~pgth?w  ~ (pg®Pw/ L?)tz=
high Reynolds number, buoyancy-inertia balance F; ~F,

L~ (ga)”* 1) R (gaQ)“ 1)
*, \ / |
Froude number constant

|
[Formulae must be dimensionally correct]
with constants only really determinable by numerical solution of

equations or experiment, with good agreement of functional forms.
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simplest analysis of approximate box model

a = 0; constant V

" Ky = Fr(gh)”
xgh= Ay

X
>

1

6.3

o N b = ER) (om) e

(no entrainment)
[ Shallow water theory also possible, B,H2 & L, 1993 ]

2. Low Reynolds number Re=VH v <<1 currents are very different.

Inertia is no longer relevant.

. viscous force
F, = uN?udx dy dz

_ 2
~ wULwWh F,~uUR?/h
~ug Pwt ~uQ Rt * !

buoyancy - viscous balance F, ~ Fq

L~ (0&3/v) 15 R~ (ge¥/v) ey

Under what conditions are these balances valid?
R/ Fy~ (a* 0@v?) "t ® ~(Q o) V2
which allows for the definition of a transition time
t = (o/ gﬂ?vs)m ) t, = (Q/ gaov)t' )
These expressions have a singularity at
a=a,=174 a=0,=3
For a<a, t<<t inertial

i
) ycurrent
t>>t viscous p

a=a, J=v3g®/q*,vg¢Q <<1 inertial" t

>>1 viscous" t
a> o, t<<t viscous

i
.. Yycurrent
t>>1 inertial p

a <a, inertial then viscous

a >a, viscous then inertial
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3. Re<<1 p gNg»0 6.5
0=-Np+uN?q
(linear equation, but boundary conditions may not be)
In the flow of thin films - lava domes, lubrication bearings - analytical
simplifications can be made which take into account that 9, <<d, and
u» [u(zx),0,0] .
As an example, consider a thin dimensional current propagating on a rigid

horizontal boundary - lava flow, honey on toast, oil on ground etc.

0 p=p, onunknown surface z=h(xt)
4 o e
xy () X hydrostatic
(H?, 1982) ap oh
- . T PO
X X
6.6

Current driven by pressure gradient as a result of slope of free surface.
[If density of outer fluidis p - Dp, g¢replaces g.]

0 because thin

dh
(X - momentum) 0=- PO (x,t) + M/Uxx + uu,
(boundary conditions) u=0 (z=0) Z_;j =0 (z=h)

h(x, t)———>

u(x, z,t):-—g-—ahz(zh- 2)
u 2v 9%
A h oh
= A :_i—g 3 o 271-1
L » Q Qudz 3vh x ( LT )

local continuity _ _4 oh

Q Q+0Q

dhox+0Qot=0




dh a 6.7

ie 4520
t o0Xx
oh J oho
and hence __%_g_ 3=
t v IX I0X9

a nonlinear diffusion equation
X (1)

global continuity Q h(x,t)dx=Volume = At* say
Solution either by numerical integration for given initial conditions
(difficult) or by trying for a solution in one similarity variable

[c.f. x/(xt)? ] to which all solutions tend.

H2 method to determine similarity solutions

4
h Bh—z \ h® ~ x%/pt
X

-19 n_
b=3 ta

same size as, and definitely

same dimensions as

hx~V (assumeconstant; a=0) h~V/x 6.8

3 2 5 _
X o X v?) T xe-a
X Bt BVt

3YYS i-us - : fmilari i
suggests m= (BV ) xt is a suitable similarity variable

and also h~—~ =t

Thus h(x,t) =n,"° (Vz/B Ust'“sq)(n/ Ny °Y)
where m is the value of n at the nose

atZ-élt]dn 8X=2dn
with (%09 +2ypor10=0 =y
=gl
1 b.c. $=0 (y=1) suffices!!
exact solution by integration  ¢(y) = —1?5)1/3 (1— yz)u3 ny = 1411
(in terms of G functions)




If o1 0 similarity theory works only if input at origin (otherwise

6.9
a length scale is introduced) with similarity variable
s
n= (VE) it G
1/5
which shows immediately that  xy =1y (ﬁvs) {(Ber1)s
. . ; . % (3a+1)/8
if the flow is axisymmetric Ry (t) =&y ([SV?’) Gty
Experimental confirmation
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If compressibility of the flow is important because of gas pockets, the

10°
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t(s)

r=90 t**

3a+1

a=0.66 b =0.37

density will increase as a function of pressure, e.g. p =po{1- B(p- po)}
The importance of compressibility in a flow of constant influx, Q , is

dependent upon the value of

C=poBy(Q/pZg) S -
04 | -
r=ny (9Q%/vp3) " t” 0z \\
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Is a two-dimensional flow of a thin film down a slope possible? 6.11

(H2, 1982)
2 Assume it is
(X - momentum) 0=- 1 p,+ gsind +vug,
p
1

Xy (1) (z- momentum) O0=--p,- g cosd
P

p(x, z,t)=-pgzcosh +f(x,t)
with f(x,t) suchthat p=p, on z=h(xt), i.e.
p=p +pg(h- z)cos6 \ vu,, = gh,c, - g sind
u(x,0)=0 u,(x,h)=0
unless a»0, because h,<<1, h, cosf<< sin®

g sinb
2v

\ u= z(2h- z)  with Q=-31—3 h®sin6
g sino
h+Q,=0 b h+ . h?h, =0
A first order nonlinear equation which shows that h is constant along
dx_ g sind 2

characteristics given by v

® gs 0
The solution is thus given by ~ h(x,t)= ng- P thE 6.12
v

where  h(x,0)= F(x)

Larger values of h travel faster ( p h?) with initial blob spreading so
that back thins and front steepens

As t® ¥ the solution must behave like h=(v/gs,)"* x"* t*?
independent of F. This is also the similarity solution [Prove this!]

. . (1)
Considered along with Q h(x, t) dx= A,

we obtain Xy = (;91 A? gsd/v)mt“3
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The length of a two-dimensional current down a slope, normalized with respect to A2 as a function of suitably non-
dimensionalized time. The straight line is the theoretical prediction and the experimental points are for six typical runs.




6.13
Incorporating the effects of surface tension (coefficient T ) indicates

that after a distance X U A"’ an instability occurs with a wavelength
A =7.5(A"T/pgs, )"

independent of n (which only gives timescale) !
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The wavelength of the instability at the front, normalized with respect to
(A“zT/pg)m, as a function of the slope angle o , at three different viscosities.

6.14
MAIN CONCEPTS

* Gravity currents propagate with buoyancy forces balanced by either

inertial forces, for Re >> 1, or viscous forces, for Re << 1.

* Force balances or simple box models for the evolution lead to good

predictions.

e Lubrication theory for viscous currents yields very accurate

descriptions.

e Similarity theory is often useful in advection / diffusion problems.
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