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These are some notes on the material I will present in Kyoto. Sections marked with a
* are either more advanced or are are not central to the main theme, and I will not cover
some or all the material in these sections. Also, some material may already be familiar
to the audience; if so, I will skip that during the lectures.

The lectures will fall into two parts:

(i) The theory of turbulence and geostrophic turbulence (chapters 1 and 2).

(ii) Applications of this theory to the general circulation, including the midlatitude
atmosphere and parts of the ocean (chapter 3).

We will not try to cover all this material in the lectures. Rather, the lectures will draw
from these notes as appropriate.
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CHAPTER

ONE

Basic Theory of Incompressible Turbulence

Turbulence is high Reynolds number fluid flow, dominated by nonlinearity, with both
spatial and temporal disorder. A turbulent flow has eddies with a spectrum of sizes
between some upper and lower bounds, the former usually determined by the forcing
scale or the domain scale, and the latter usually by viscosity.

1.1 THE FUNDAMENTAL PROBLEM OF TURBULENCE

1.1.1 The Closure Problem

Although in a turbulent flow it may be virtually impossible to predict the detailed mo-
tion of each eddy, the statistical properties — time averages for example — might not be
changing and we might like to predict such averages. Thus, we might accept we can’t
predict the weather but we can try to predict the climate. Even though we know which
equations determine the system, this task proves to be very difficult because the equa-
tions are nonlinear, and we come up against the closure problem. To see what this is, let
us decompose the velocity field into mean and fluctuating components,

v = v + v′. (1.1)

Here v is the mean velocity field, and v′ is the deviation from that mean. The mean
might be a time average, in which case v is a function only of space and not time, or
it might be a time mean over a finite period (e.g., a season if we are dealing with the
weather), or it might be some form of ensemble mean. The average of the deviation is,
by definition, zero; that is v′ = 0. The idea is to substitute (1.1) into the momentum
equation and try to obtain a closed equation for the mean quantity v. Rather than

1



2 Chapter 1. Turbulence, Basic Theory

dealing with the full Navier-Stokes equations, let us carry out this program for a model
nonlinear system which obeys

du
dt

+uu+ ru = 0 (1.2)

where r is a constant. The average of this equation is:

du
dt

+uu+ ru = 0 (1.3)

The value of the term uu is not deducible simply by knowing u, since it involves correla-
tions between eddy quantities u′u′. That is, uu = uu+u′u′ ≠ uu. We can go to next
order to try (vainly!) to obtain an equation for uu. First multiply (1.2) by u to obtain
an equation for u2, and then average it to yield:

1
2

du2

dt
+uuu+ ru2 = 0 (1.4)

This equation contains the undetermined cubic term uuu. An equation determining this
would contain a quartic term, and so on in an unclosed hierarchy. Many methods of
‘closing the hierarchy’ make assumptions about the relationship of (n+1)’th order terms
to n’th order terms, for example by supposing that:

uuuu = αuuuu+ βuuu (1.5)

where α and β are some parameters, and closures set in physical space or in spectral
space (i.e., acting on the Fourier transformed variables) both exist. If we know that the
variables are distributed normally then such closures can be made exact, but this is not
generally the case in fluid turbulence.

This same closure problem arises in the Navier-Stokes equations. If density is con-
stant (say ρ = 1) the x-momentum equation for an averaged flow is

∂u
∂t

+ (v · ∇)u = −∂p
∂x

−∇ · v′u′. (1.6)

Written out in full in Cartesian coordinates, the last term is

∇ · v′u′ = ∂
∂x
u′u′ + ∂

∂y
u′v′ + ∂

∂z
u′w′ (1.7)

These terms, and the similar ones in the y- and z- momentum equations, represent the
effects of eddies on the mean flow and are known as Reynolds stress terms. One way of
expressing the ‘problem of turbulence’ is to find a representation of such Reynolds stress
terms in terms of mean flow quantities. Nobody has been able to close the system, in
any useful way, without introducing physical assumptions not directly deducible from
the equations of motion themselves. Indeed, not only has the problem not been solved,
it is not clear that a useful closed-form solution generally exists.
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1.1.2 Triad Interactions in turbulence

The nonlinear term in the equations of motion not only leads to difficulties in closing the
equations, but it leads to interactions among different length scales, and in this section
we write the equations of motion in a form that makes this explicit. Purely for algebraic
simplicity we will restrict attention two-dimensional flows.

The equation of motion for an incompressible fluid in two-dimensions may be written
as

Dz
Dt
eta = ∂ζ

∂t
+ J(ψ,ζ) = F + ν∇2ψ, ζ = ∇2ψ. (1.8)

where we include a forcing and viscous term but no Coriolis term. Let us suppose that
the fluid is contained in a square, doubly-periodic domain of side L, and let us expand
the streamfunction and vorticity in Fourier series so that, with a tilde denoting a Fourier
coefficient,

ψ(x,y, t) =
∑
k
ψ̃(k, t) eik·x, ζ(x,y, t) =

∑
k
ζ̃(k, t) eik·x, (1.9)

where k = ikx + jky , ζ̃ = −k2ψ̃ where k2 = kx2 + ky2 and, to ensure that ψ is real,
ψ̃(kx , ky , t) = ψ̃∗(−kx ,−ky , t), a property known as conjugate symmetry. The summa-
tions are over all positive and negative x- and y-wavenumbers, and ψ̃(k, t) is shorthand
for ψ̃(kx , ky , t). Substituting (1.9) in (1.8) gives, with (for the moment) F and ν both
zero,

∂
∂t

∑
k
ζ̃(k, t) eik·x = −

∑
p
pxψ̃(p, t) eip·x ×

∑
q
qy ζ̃(q, t) eiq·x

+
∑
p
pyψ̃(p, t) eip·x ×

∑
q
qxζ̃(q, t) eiq·x.

(1.10)

where p and q are, like k, horizontal wave vectors. We may obtain an evolution equation
for the wavevector k by multiplying (1.10) by exp(−ik · x) and integrating over the
domain, and using the fact that the Fourier modes are orthogonal; that is∫

eip·x eiq·x dA = 1
L2δ(p + q). (1.11)

where δ(p+q) equals unity if p = −q and is zero otherwise. Using this, (1.10) becomes,
restoring the forcing and dissipation terms,

∂
∂t
ψ̃(k, t) =

∑
p,q
A(k,p,q)ψ̃(p, t)ψ̃(q, t)+ F̃(k)− νk4ψ̃(k, t), (1.12)

where A(k,p,q) = (q2/k2)(pxqy −pyqx)δ(p+q−k) is an ‘interaction coefficient’, and
the summation is over all p and q; however, note that only those wavevector triads with
p + q = k make a nonzero contribution, because of presence of the delta function.

Consider, then, a fluid a fluid in which just two Fourier modes are initially excited,
with wavevectors p and q say (along with their conjugate-symmetric partners at −p
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Fig. 1.1 Two interacting triads, each with k = p+q. On the left, a local triad with
k ∼ p ∼ q. On the right, a nonlocal triad with k ∼ p� q.

and −q). These modes interact [obeying (1.12)] to generate third and fourth wavenum-
bers, k = p + q and m = p − q (again along with their conjugate-symmetric partners).
These four wavenumbers can interact among themselves to generate several additional
wavenumbers, k + p, k +m etc, and these in turn lead to still more interactions so po-
tentially filling out the entire spectrum of wavenumbers. The individual interactions are
called triad interactions, and it is by way of such interactions that energy is transferred
between scales in turbulent flows, in both two and three dimensions. The dissipation
term does not lead to interactions between modes with different wavevectors; rather, it
acts like a drag on each Fourier mode, with a coefficient that increases with wavenumber
and therefore that preferentially affects small scales.

The selection rule for triad interactions — that k = p + q — does not restrict the
scales of these interacting wavevectors, and the types of triad interactions fall between
two extremes:

(i) Local interactions, in which k ∼ p ∼ q;
(ii) Nonlocal interactions, in which k ∼ p� q.

These two kinds of triads are schematically illustrated in Fig. 1.1. Without very detailed
analysis of the solutions of the equations of motion — an analysis that is impossible
for fully-developed turbulence — it is impossible to say whether one particular kind of
triad interaction dominates. The theory of Kolmogorov considered below, and its two-
dimensional analog, assume that it is the local triads that are most important in trans-
ferring energy; this is a reasonable assumption because from the perspective of a small
eddy, large eddies appear as a nearly-uniform flow, and so simply translate the small
eddies around without distorting them and thus without transferring energy between
scales.
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1.2 THE KOLMOGOROV THEORY

The foundation of many theories of turbulence is the spectral theory of Kolmogorov.
This theory does not close the equations in quite as explicit a manner as (1.5), but it
does provide a prediction for the energy spectrum of a turbulent flow (loosely speaking,
how much energy is present at a particular spatial scale) and it does this by suggesting a
relationship between the energy spectrum (a second order quantity in velocity) and the
spectral energy flux (a third order quantity).

1.2.1 The physical picture

Consider high Reynolds number (Re) incompressible flow that is being maintained by
some external force. Then the evolution of the system is governed by

∂v
∂t
+ (v · ∇)v = −∇p + F + ν∇2v (1.13)

and
∇ · v = 0 (1.14)

Here, F is some force we apply to maintain fluid motion — for example, we stir the fluid
with a spoon. (A pedant might argue that such stirring is not a force like gravity but
a continuous changing of the boundary conditions. Having noted this, we treat it as a
force.) A simple scale analysis of these equations seems to indicate that the relative sizes
of the inertial terms on the left-hand side to the viscous term is the Reynolds number
VL/ν. To be explicit let us consider the ocean, and take V = 0.1 m s−1, L = 1000 km and
ν = 10−6 m2 s−1. Then Re = VL/ν ≈ 1011, and it seems that we can neglect the viscous
term on the right hand side of (1.13). But this can lead to a paradox. The fluid is being
forced, and this forcing is likely to put energy into the fluid. We obtain the energy budget
for (1.13) by multiplying by v and integrating over a domain. If there is no flow into or
out of our domain, the inertial terms in the momentum equation conserve energy and,
recalling the results of section ??, the energy equation is

dÊ
dt

= d
dt

∫
1
2
v2 dV =

∫ (
F · v + νv · ∇2v

)
dV =

∫ (
F · v − νω2

)
dV (1.15)

where Ê is the total energy. If we neglect the viscous term we are led to an inconsistency,
since the forcing term is a source of energy: F · v > 0, because a force will normally,
on average, produce a velocity that is correlated with the force itself. Without viscosity,
energy keeps on increasing.

What is amiss? It is true that for motion with a 1000 km length scale and a velocity
of a few centimetres per second we can neglect viscosity when considering the balance
of forces in the momentum equation. But this does not mean that there is no motion at
much smaller length scales — indeed we seem to be led to the inescapable conclusion
that there must be some motion at smaller scales in order to remove energy. Scale
analysis of the momentum equation suggests that viscous terms will be comparable with
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the inertial terms at a scale Lν where the Reynolds number based on that scale is of order
unity, giving

Lν ∼
ν
V
. (1.16)

This is a very small scale for geophysical flows, of order millimetres or less. Where and
how are such small scales generated? Boundaries are one important region. If there
is high Reynolds number flow above a solid boundary, for example the wind above the
ground, then viscosity must become important in bringing the velocity to zero in order
that it can satisfy the no-slip condition at the surface, as illustrated in Fig. ??.

Motion on very small scales may also be generated in the fluid interior. How might
this happen? Suppose the forcing acts only at large scales, and its direct action is to
set up some correspondingly large scale flow, composed of eddies and shear flows and
such-like. Then typically there will be an instability in the flow, and a smaller eddy
will grow: initially, the large scale flow may be treated as an unchanging shear flow,
and the disturbance while small will obey linear equations of motion similar to those
applicable in idealized Kelvin-Helmholtz instability. This instability clearly must draw
from the large scale quasi-stationary flow, and it will eventually saturate at some finite
amplitude. Although it has grown in intensity, it is still typically smaller than the large
scale flow which fostered it (remember how the growth rate of the shear instability gets
larger as wavelength of the perturbation decreased). As it reaches finite amplitude, the
perturbation itself may become unstable, and smaller eddies will feed off its energy and
grow, and so on. The picture that emerges is of a large scale flow that is unstable to
eddies somewhat smaller in scale. These eddies grow, and develop still smaller eddies.
Energy is transferred to smaller and smaller scales in a cascade-like process, sketched
in Fig. 1.2. Finally, eddies are generated which are sufficiently small that they feel the
effects of viscosity, and energy is drained away. Thus, there is a flux of energy from the
large scales to the small scales, where it becomes dissipated.

1.2.2 Inertial range theory

Given the above picture it becomes possible to predict what the energy spectrum is. Let
us suppose that the flow is statistically isotropic (i.e., the same in all directions) and
homogeneous (i.e., the same everywhere; note that all isotropic flows are homogeneous,
but not vice versa). Homogeneity precludes the presence of solid boundaries but can
be achieved in a periodic domain. This puts an upper limit, sometimes called the outer
scale, on the size of eddies.

If we decompose the velocity field into Fourier components, then in a finite domain
we may write

u(x,y, z, t) =
∑

kx ,ky ,kz
ũ(kx , ky , kz, t) ei(k

xx+kyy+kzz) (1.17)

where ũ is the Fourier transformed field of u, with similar identities for v and w. The
sum is over all wavenumbers and in finite domain the wavenumbers are quantized, so
that, for example, kx = 2πn/L, where n is an integer and L the domain size. Finally,
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Fig. 1.2 Schema of a ‘cascade’ of energy to smaller scales: eddies at a large scale
break up into smaller scale eddies, thereby transferring energy to smaller scales. If
the transfer occurs between eddies of similar sizes (i.e., if it is spectrally local) the
transfer is said to be a cascade. The eddies in reality are embedded within each
other.

to ensure that u is real we require that ũ(−kx ,−ky ,−kz) = ũ∗(kx , ky , kz), where the
asterisk denotes the complex conjugate. The energy in the fluid is given by (assuming
density is unity)

Ê =
∫
E dV = 1

2

∫
(u2 + v2 +w2)dV

= 1
2

∑
(|ũ|2 + |ṽ|2 + |w̃|2)dk (1.18)

using Parseval’s theorem, where Ê is the total energy and E is the energy per unit volume.
We will now suppose that the turbulence is homogeneous and isotropic, and furthermore
we will suppose that the domain is sufficiently large that the sums in the above equations
may be replaced by integrals. We then write (1.18) as

Ê ≡
∫
E(k)dk (1.19)

where E(k) is the energy spectral density, or the energy spectrum, (so that E(k)δk is the
energy in the small wavenumber interval δk) and because of the assumed isotropy, the
energy is a function only of the scalar wavenumber k, where k2 = kx2 + ky2 + kz2.

We now suppose that the fluid is stirred at large scales and, via the nonlinear terms
in the momentum equation, that this energy is transferred to small scales where it is dis-
sipated by viscosity. The key assumption is to suppose that, if forcing scale is sufficiently
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Dimensions and the Kolmogorov Spectrum

Quantity Dimension
Wavenumber, k 1/L
Energy per unit mass, E U2 = L2/T 2

Energy spectrum, E(k) EL = L3/T 2

Energy Flux, ε E/T = L2/T 3

If E = f(ε, k) then the only dimensionally consistent relation for the energy
spectrum is

E = Kε2/3k−5/3

where K is a dimensionless constant.

larger than the dissipation scale, there exists a range of scales intermediate between the
large scale and the dissipation scale where neither forcing nor dissipation are explicitly
important to the dynamics. This assumption, known as the locality hypothesis, depends
on the nonlinear transfer of energy being sufficiently local (in spectral space). This inter-
mediate range is known as the inertial range, because the inertial terms and not forcing
or dissipation must dominate in the momentum balance. If the rate of energy input per
unit volume by stirring is equal to ε, then if we are in a steady state there must be a flux
of energy from large scales to small also equal to ε, and an energy dissipation rate, also
ε.

Now, we have no general theory for the energy spectrum of a turbulent fluid but we
we might write it in the general form general form

E(k) = g(ε, k, k0, kν) (1.20)

where the right-hand side denotes a function of the energy flux ε, the wavenumber k,
the forcing wavenumber k0 and the wavenumber at which dissipation acts, kν (and
kν ∼ L−1

ν ). The function f will of course depend on the particular nature of the forcing.
Now, the locality hypothesis essentially says that at some scale within the inertial range
the flux of energy to smaller scales depends only on processes occurring at or near that
scale. That is to say, the energy flux is only a function of E and k, or equivalently that
the energy spectrum can be a function only of the energy flux ε and the wavenumber
itself. From a physical point of view, as energy cascades to smaller scales the details of
the forcing are forgotten but the effects of viscosity are not yet apparent, and the energy
spectrum takes the form,

E(k) = g(ε, k). (1.21)

The function g is, within this theory, universal, the same for every turbulent flow.
Let us now use dimensional analysis to gives us the form of the function f(ε, k) (see
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Figure 1.3 Schema of energy
spectrum in three-dimensional
turbulence, in the theory of
Kolmogorov. Energy is supplied
at some rate ε; it is transferred
(‘cascaded’) to small scales, where
it is ultimately dissipated by
viscosity. There is no systematic
energy transfer to scales larger
than the forcing scale, so here the
energy falls off.

the shaded box). In (1.21), the left hand side has dimensionality L3/T 2; the dimension
T−2 on the left-hand side can only be balanced by ε2/3 because k has no time depen-
dence; that is,

E(k) ∼ ε2/3g(k)

L3

T 2 ∼
L4/3

T 2 g(k). (1.22)

where g(k) is some function; this function g(k) must have dimensions L5/3 and the
functional relationship we must have, if the physical assumptions are right, is

E(k) = Kε2/3k−5/3 . (1.23)

This is the famous ‘Kolmogorov -5/3 spectrum’, enshrined as one of the cornerstones of
turbulence theory, and sketched in Fig. 1.3, and some experimental results are shown in
Fig. 1.4. The parameter K is a dimensionless constant, undetermined by the theory. It is
known as Kolmogorov’s constant and experimentally it is found to be approximately 1.5.

An equivalent, perhaps slightly more intuitive, way to derive this is to first define an
eddy turnover time τk, which is the time taken for a parcel with velocity vk to move a
distance 1/k, vk being the velocity associated with the (inverse) scale k. On dimensional
considerations vk = (E(k)k)1/2 so that

τk = (k3E(k))−1/2. (1.24)

Kolmogorov’s assumptions are then equivalent to setting

ε ∼
v2
k
τk

= kE(k)
τk

. (1.25)

If we demand that ε be constant then (1.24) and (1.25) yield (1.23).
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Fig. 1.4 The energy spectrum of 3D turbulence measured in some experiments
at the Princeton Superpipe facility. The outer plot shows the spectra from a large-
number of experiments at different Reynolds numbers, with the magnitude of their
spectra appropriately rescaled. Smaller scales show a good -5/3 spectrum, whereas
at larger scales the eddies feel the effects of the pipe wall and the spectra are a
little shallower. The inner plot shows the spectrum in the centre of the pipe in a
single experiment at Re ≈ 106.

The viscous scale and energy dissipation

At some small length-scale we should expect viscosity to become important and the
scaling theory we have just set up will fail. What is that scale? In the inertial range
friction is unimportant because the timescales on which it acts are too long for it be
important and dynamical effects dominate. In the momentum equation the viscous term
is ν∇2u so that a viscous or dissipation timescale at a scale k−1, τνk , is

τνk ∼
1
k2ν

, (1.26)

so that the viscous timescale decreases with scale. The eddy turnover time, τk — that is,
the inertial timescale — in the Kolmogorov spectrum is

τk = ε−1/3k−2/3. (1.27)

The wavenumber at which dissipation becomes important is then given by equating these
two timescales, yielding the dissipation wavenumber, kν and the associated length-scale,
Lν ,

kν ∼
(
ε
ν3

)1/4

, Lν ∼
(
ν3

ε

)1/4

. (1.28a,b)
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Lν is called the Kolmogorov scale. It is the only quantity which can be created from the
quantities ν and ε that has the dimensions of length. (It is the same as the scale given by
provided that in that expression V is the velocity magnitude at the Kolmogorov scale.)
Thus, for L >> Lν , τk << τνk and inertial effects dominate. For L << Lν , τνk << τk
and frictional effects dominate. In fact for length-scales smaller than the dissipation
scale, (1.27) is inaccurate; the energy spectrum falls off more rapidly than k−5/3 and
the inertial timescale falls off less rapidly than (1.27) implies, and dissipation dominates
even more.

Given the dissipation scale, let us estimate the energy dissipation rate. This is given
by (section ??)

˙̂E =
∫
νv · ∇2v dV. (1.29)

The length at which dissipation acts is the Kolmogorov scale and, noting that v2
k ∼

ε2/3k−2/3 and using (1.28a), the energy dissipation rate scales as (for a box of unit size)

˙̂E ∼ νk2
νv

2
kν ∼ νk

2
ν
ε2/3

k2/3
ν

∼ ε. (1.30)

That is, the energy dissipation rate is equal to the energy cascade rate. On the one hand
this seems sensible, but on the other hand it is independent of the viscosity. In particular,
in the limit of viscosity tending to zero, Lν tends to zero, but the energy dissipation
does not! Surely the energy dissipation rate must go to zero if viscosity goes to zero?
To see that this is not the case, consider that energy is input at some large scales, and
the magnitude of the stirring largely determines the energy input and cascade rate. The
scale at which viscous effects then become important is determined by the viscous scale,
Lν , given by (1.28b). As viscosity tends to zero L−1

ν becomes smaller in just such a way
as to preserve the constancy of the energy dissipation. This is one of the most important
results in three-dimensional turbulence. Now, we established in section ?? that the Euler
equations (i.e., the fluid equations with the viscous term omitted from the outset) do
conserve energy. This means that the Euler equations are a singular limit of the Navier-
Stokes equations: the behaviour of the Navier-Stokes equations as viscosity tends to zero
is different from the behaviour resulting from‘ simply omitting the viscous term from the
equations ab initio.

How big is Lν in the atmosphere? A crude estimate, perhaps wrong by an order of
magnitude, comes from noting that ε has units of U3/L, and that at length-scales of order
100 m in the atmospheric boundary layer (where there might be a three-dimensional
energy cascade to small scales) velocity fluctuations are of order 1 cm s−1, giving ε ≈
10−8 m2 s−3. Using (1.28b) we then find the dissipation scale to be of order a millimetre
or so. In ocean the dissipation scale is also of order millimetres.

1.2.3 * An alternative scaling argument for inertial ranges

Kolmogorov’s spectrum, as well as some other useful scaling relationships, can be ob-
tained in a slightly different way as follows. If we for the moment ignore viscosity, the
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Euler equations are invariant under the following scaling transformation:

x → xλ v → vλr t → tλ1−r , (1.31)

where r is an arbitrary scaling exponent. So far there is minimal physics. Now make the
following physical assumptions about the behaviour of a turbulent fluid, with viscosity:

(i) That the flux of energy from large to small scales (i.e., ε) is finite and constant.
(ii) That the scale invariance (1.31) holds, on a time-average, in the intermediate scales

between the forcing scales and dissipation scales.
The second assumption plays the role of the locality hypothesis. Dimensional analysis
then tells us that the energy flux at some wavenumber k scales as

εk ∼
v3
k
lk
∼ λ3r−1. (1.32)

where vk and lk are the velocity and length scales at wavenumber k. Invoking assump-
tion (i), that ε is independent of scale, gives r = 1/3. The velocity then scales as

vk ∼ ε1/3k−1/3, (1.33)

and the velocity gradient (and so vorticity) scales as kvk ∼ ε1/3k2/3. (This becomes
infinite at very small scales, but this behaviour is avoided in any real physical situation by
the presence of viscosity.) We can now recover (1.23) because, on dimensional grounds,

E(k) ∼ v2
kk

−1 ∼ ε2/3k−2/3k−1 ∼ ε2/3k−5/3. (1.34)

In general, the slope of the energy spectrum, kn, is related to the scaling exponent by
n = −(2r + 1). The ‘structure functions’ Sm, which are the average of the m′th power
of the velocity difference over distances l ∼ 1/k, scale as Sm ∼ (vk)m ∼ εm/3k−m/3.
In particular the second-order structure function, which is the Fourier transform of the
energy spectra, scales as S2 ∼ ε2/3k−2/3. Other results of the Kolmogorov theory follow
similarly.

1.2.4 A final note on our assumptions

The essential physical assumptions are: (i) that there exists an inertial range in which the
energy flux is constant, and (ii) that the energy is cascaded from large to small scales in
a series of small steps, for then the energy spectra will be determined by spectrally local
quantities. The second assumption is the locality assumption and without it we could
have

E(k) = Cε2/3k−5/3g(k/k0)h(k/kν), (1.35)

where g and h are unknown functions; this is just as dimensionally consistent as (1.23).
Kolmogorov essentially postulated that there exists a range of intermediate wavenum-
bers over which the energy spectrum has no functional dependence of the energy spectra
on the forcing or dissipation scale, and g(k/k0) = h(k/kν) = 1.
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The first assumption might be called the non-intermittency assumption, and it de-
mands that rare events (in time or space) with large amplitudes do not dominate the
energy flux or the dissipation rate. If they were to do so, then the flux would fluctuate
strongly, the turbulent statistics would not be completely characterized by ε and Kol-
mogorov’s theory would not be exactly right. (Note that in the theory ε is the mean
energy cascade rate.) In fact, in high Reynolds turbulence the −5/3 spectra is often ob-
served to a fairly high degree of accuracy (e.g., as in Fig. 1.4), although the higher-order
statistics (e.g., higher-order structure functions) predicted by the theory are often found
to be in error, and it is generally believed that Kolmogorov’s theory is not exact.

1.3 TWO-DIMENSIONAL TURBULENCE

Two-dimensional turbulence behaves in a profoundly different way from three-dimen-
sional turbulence, largely because of the presence of another quadratic invariant, the
enstrophy (see also section ??). In two dimensions, the vorticity equation for incom-
pressible flow is:

∂ζ
∂t

+ u · ∇ζ = F + ν∇2ζ (1.36)

where u = ui+vj and ζ = k·∇×u and F is a stirring term. In terms of a streamfunction,
u = −∂ψ/∂y , v = ∂ψ/∂x , and ζ = ∇2ψ, and (1.36) may be written:

∂∇2ψ
∂t

+ J(ψ,∇2ψ) = F + ν∇4ψ. (1.37)

We obtain an energy equation by multiplying by −ψ and integrating over the domain,
and an enstrophy equation by multiplying by ζ and integrating. When F = ν = 0 we
find:

Ê = 1
2

∫
A
(u2 + v2)dA = 1

2

∫
A
(∇ψ)2 dA,

dÊ
dt

= 0, (1.38a)

Ẑ = 1
2

∫
A
ζ2 dA = 1

2

∫
A
(∇2ψ)2 dA,

dẐ
dt

= 0. (1.38b)

where the integral is over a finite area with either no-normal flow or periodic boundary
conditions. The quantity Ê is the energy, and Ẑ is known as the enstrophy. This enstrophy
invariant arises because the vortex stretching term, so important in three-dimensional
turbulence, vanishes identically in two dimensions. In fact, because vorticity is conserved
on parcels it is clear that the integral of any function of vorticity is zero when integrated
over A; that is, from (1.36)

Dg(ζ)
Dt

= 0 and
d
dt

∫
A
g(ζ)dA = 0. (1.39)

where g(ζ) is an arbitrary function. Of this infinity of conservation properties, enstro-
phy conservation (with g(ζ) = ζ2) in particular has been found to have enormous con-
sequences to the flow of energy between scales, as we soon discover.
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Initial Later

Fig. 1.5 In incompressible two-dimensional flow, a band of fluid will generally
be elongated, but its area will be preserved. Since vorticity is tied to fluid parcels,
the values of the vorticity in the hatched area (and in the hole in the middle) are
maintained; thus, vorticity gradients will increase and the enstrophy is thereby, on
average, moved to smaller scales.

1.3.1 Energy and Enstrophy Transfer in Two-Dimensional Turbulence

In three dimensional turbulence we posited that energy is cascaded to small scales via
vortex stretching. In two dimensions that mechanism is absent, and it turns out that
it is more reasonably to expect energy to be transferred to larger scales. This counter-
intuitive behaviour arises from the twin integral constraints of energy and enstrophy
conservation, and the following three arguments illustrate why this should be so.

I Vorticity elongation

Consider a band or a patch of vorticity, as in Fig. 1.5, in a nearly inviscid fluid. The
vorticity of each element of fluid is conserved as the fluid moves. Now, we should expect
that quasi-random motion of the fluid will act to elongate the band but, as its area must
be preserved, the band narrows and so vorticity gradients will increase. This is equivalent
to the enstrophy moving to smaller scales. Now, the energy in the fluid is

Ê = −1
2

∫
ψζ dA, (1.40)

where the streamfunction is obtained by solving the Poisson equation ∇2ψ = ζ. If the
vorticity is locally elongated primarily only in one direction (as it must be to preserve
area), the integration involved in solving the Poisson equation will lead to the scale of the
streamfunction becoming larger in the direction of stretching, but virtually no smaller
in the perpendicular direction. Because stretching occurs, on average, in all directions,
the overall scale of the streamfunction will increase in all directions, and the cascade of
enstrophy to small scales will be accompanied by a transfer of energy to large scales.

II An energy-enstrophy conservation argument
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A moments thought will reveal that the distribution of energy and enstrophy in wavenum-
ber space are respectively analogous to the distribution of mass and moment of inertia of
a lever, with wavenumber playing the role of distance from the fulcrum. Any rearrange-
ment of mass such that its distribution also becomes wider must be such that the centre
of mass moves toward the fulcrum. Thus, analogously, any rearrangement of a flow that
preserves both energy and enstrophy, and that causes the distribution to spread out in
wavenumber space, will tend to move energy to small wavenumbers and enstrophy to
large. To prove this we begin with expressions for the total energy and enstrophy:

Ê =
∫
E(k)dk, Ẑ =

∫
Z(k)dk =

∫
k2E(k)dk, (1.41)

where E(k) and Z(k) are the energy and enstrophy spectra. A wavenumber characteriz-
ing the spectral location of the energy is the centroid,

ke =
∫
kE(k)dk∫
E(k)dk

(1.42)

and, for simplicity, we normalize units so that the denominator is unity. The spreading
out of the energy distribution is formalized by setting

I ≡
∫
(k− ke)2E(k)dk,

dI
dt
> 0. (1.43)

Here, I measures the width of the energy distribution, and this is assumed to increase.
Expanding out the integral gives

I =
∫
k2E(k)dk− 2ke

∫
kE(k)dk+ k2

e

∫
E(k)dk

=
∫
k2E(k)dk− k2

e

∫
E(k)dk, (1.44)

where the last equation follows because ke =
∫
kE(k)dk is, from (1.42), the energy-

weighted centroid. Because both energy and enstrophy are conserved, (1.44) gives

dk2
e

dt
= −1

Ê
dI
dt
< 0. (1.45)

Thus, the centroid of the distribution moves to smaller wavenumber and to larger scale
(see Fig. 1.6).

An appropriately defined measure of the centre of the enstrophy distribution, on the
other hand, moves to higher wavenumber. The demonstration follows easily if we work
with the inverse wavenumber, which is a direct measure of length. Let q = 1/k and
assume that the enstrophy distribution spreads out by nonlinear interactions, so that,
analogously to (1.43),

J =
∫
(q − qe)2Z(q)dq,

dJ
dt
> 0, (1.46)

where

qe =
∫
qZ(q)dq∫
Z(q)dq

. (1.47)
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Figure 1.6 In two-
dimensional flow, the centroid
of the energy spectrum will
move to large scales (smaller
wavenumber) provided that
the width of the distribution
increases, which can be ex-
pected in a nonlinear, eddying
flow
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Expanding the integrand in (1.46) and using (1.47) gives

J =
∫
q2Z(q)dq − q2

e

∫
Z(q)dq, (1.48)

But
∫
q2Z(q)dq is conserved, because this is the energy. Thus,

dJ
dt

= − d
dt
q2

e

∫
Z(q)dq (1.49)

whence
dq2

e

dt
= − 1

Ẑ
dJ
dt
< 0 (1.50)

Thus, the length scale characterizing the enstrophy distribution gets smaller, and the
corresponding wavenumber gets larger.

III A similarity argument

Consider an initial value problem, in which a fluid with some initial distribution of energy
is allowed to freely evolve, unencumbered by boundaries. We note two aspects of the
problem:

(i) There is no externally imposed length-scale (because of the way the problem is
posed).

(ii) The energy is conserved (this being an assumption).
It is the second condition that limits the argument to two dimensions, for in three di-
mensions energy is quickly cascaded to small scales and dissipated, but let us here posit
that this does not occur. These two assumptions are then sufficient to infer the general
direction of transfer of energy, using a rather general similarity argument. To begin,
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write the total energy (per unit mass) of the fluid as

Ê = U2 =
∫
E(k, t)dk, (1.51)

where E(k, t) is the energy spectrum and U is measure of the total energy, with units of
velocity. Now, solely on dimensional considerations we can write

E(k, t) = U2LÊ(k̂, t̂), (1.52)

where Ê, and its arguments, are nondimensional quantities, and L is some length-scale.
However, on physical considerations, the only parameters available to determine the
energy spectrum are U , t and k, the wavenumber. A little thought reveals that the most
general form for the energy spectrum with no L dependence is

E(k, t) = U3tÊ = U3tg(Ukt), (1.53)

where g is an arbitrary function of its arguments. The argument of g is the only non-
dimensional grouping of U , t and k, and U3t provides the proper dimensions for E.
Conservation of energy now implies that the integral

I =
∫∞

0
tg(Ukt)dk (1.54)

not be a function of time. Defining ϑ = Ukt, this requirement is met if∫∞
0
g(ϑ)dϑ = constant. (1.55)

Now, the spectrum is a function of k only through the combination ϑ = Ukt. Thus, as
time proceeds features in the spectrum move to smaller k. Suppose, for example, that
the energy is initially peaked at some wavenumber kp; the product tkp is preserved, so
kp must diminish with time and the energy must move to larger scales. Similarly, the
energy weighted mean wavenumber, ke, moves to smaller wavenumber, or larger scale.
To see this explicitly, we have

ke =
∫
kE dk∫
E dk

=
∫
kE dk
U2 =

∫
kUt g(Ukt)dk =

∫
ϑg(ϑ)
Ut

dϑ = C
Ut

(1.56)

where all the integrals are over the interval (0,∞) and C =
∫
ϑg(ϑ)dϑ is a constant.

Thus, the wavenumber centroid of the energy distribution decreases with time, and the
characteristic scale of the flow, 1/ke, increases with time. Interestingly, the enstrophy
does not explicitly enter this argument, and in general it is not conserved; rather, it is
the requirement that energy be conserved that limits the argument to two dimensions,
If we accept ab initio that energy is conserved, it must be transferred to larger scales.

1.3.2 Inertial ranges in 2D turbulence

If, unlike the case in three dimensions, energy is transferred to larger scales in inviscid,
nonlinear, two-dimensional flow then we might expect two-dimensional turbulence, and
any associated inertial ranges, to be quite different from their three-dimensional coun-
terparts. Before looking in detail at the inertial ranges themselves, we establish a couple
of general properties of forced-dissipative flow in two dimensions.
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Some properties forced-dissipative flow

We will first show that, unlike the case in three dimensions, energy dissipation goes to
zero as Reynolds number rises. In the absence of forcing terms, the total dissipation of
energy is, from (1.36)),

dÊ
dt

= −ν
∫
ζ2 dA (1.57)

Energy dissipation can only remain finite as ν → 0 if vorticity becomes infinite. How-
ever, this cannot happen because vorticity is conserved on parcels except for the action
of viscosity, meaning that Dζ/Dt = ν∇2ζ. However, the viscous term can only reduce
the value of vorticity on a parcel, and so vorticity can never become infinite if it is not
so initially, and therefore using (1.57) energy dissipation goes to zero with ν. (In three
dimensions vorticity becomes infinite as viscosity goes to zero because of the effect of vor-
tex stretching.) This conservation of energy is related to the fact that energy is trapped at
large scales, even in forced-dissipative flow. On the other hand, enstrophy is transferred
to small scales and therefore we expect it to be dissipated at large wavenumbers, even
as the Reynolds number becomes very large.

We can show that energy is trapped at large scales in forced-dissipative two-dimen-
sional flow (in a sense that will be made explicit) by the following argument.

Suppose that the forcing of the fluid is confined to a particular scale, characterized by
the wavenumber kf, and that dissipation is effected by a linear drag and a small viscosity.
The equation of motion is

∂ζ
∂t

+ J(ψ,ζ) = F − rζ + ν∇2ζ. (1.58)

where F is the stirring and r and ν are positive constants. This leads to the following
energy and enstrophy equations:

dÊ
dt

= −2r Ê −
∫
ψF dx +

∫
νζ2 dA ≈ −2r Ê −

∫
ψF dA, (1.59a)

dẐ
dt

= −2r Ẑ +
∫
ζF dA−DZ ≈ −2r Ẑ − k2

f

∫
ψF dA−DZ , (1.59b)

where DZ =
∫
ν(∇ζ)2 dA is the enstrophy dissipation. To obtain the right-most expres-

sions, in (1.59a) we assume there is no dissipation of energy by the viscous term, and in
(1.59b) we assume that the forcing is confined to wavenumbers near kf. In a statistically
steady state, and writing Ê =

∫
E(k)dk and Ẑ =

∫
k2E(k)dk, then eliminating the integral

involving ψF between (1.59a) and (1.59b) gives∫
k2E(k)dk+ DZ

2r
=
∫
k2

f E(k)dk, (1.60)

where the integrations are over all wavenumbers. Now, from the obvious inequality∫
(k− ke)2E(k)dk ≥ 0, where ke is the energy centroid defined in (1.42), we obtain∫ (

k2 − k2
e

)
E(k)dk ≥ 0. (1.61)
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Combining (1.60) and (1.61) gives∫ (
k2

f − k2
e

)
E(k)dk ≥ DZ

2r
> 0. (1.62)

Thus, in a statistically steady state, the energy containing scale, as characterized by k−1
e ,

must be larger than the forcing scale k−1
f . This demonstration (rather like argument II in

section 1.3.1) relies both on the conservation of energy and enstrophy by the nonlinear
terms and on the particular relationship between the energy and enstrophy spectra.

This result, and (especially) the arguments of section 1.3.1, suggest that in a forced-
dissipative two-dimensional fluid, energy is transferred to larger scales and enstrophy
is transferred to small scales. To obtain a statistically steady state friction (such as the
Rayleigh drag of (1.58)) is necessary to remove energy at large scales, and enstrophy
must be removed at small scales, but if the forcing scale is sufficiently well separated in
spectral space from such frictional effects then two inertial ranges may form — an energy
inertial range carrying energy to larger scales, and an enstrophy inertial range carrying
enstrophy to small scales (Fig. 1.7). These ranges are analogous to the three-dimensional
inertial range of of section 1.2, and similar conditions must apply if the ranges are to be
truly inertial — in particular we must assume spectral locality of the energy or enstrophy
transfer. But given that, we can calculate their properties, as follows.

The enstrophy inertial range

In the enstrophy inertial range the enstrophy cascade rate η, equal to the rate at whicn
enstrophy is supplied by stirring, is assumed constant. By analogy with (1.25) we may
assume that this rate is given by

η ∼ k
3E(k)
τk

. (1.63)

With τk (still) given by (1.24) we obtain

E(k) = Kηη2/3k−3 , (1.64)

where Kη is, we presume, a universal constant, analogous to the Kolmogorov constant
of (1.23).

It is also possible to obtain (1.64) from scaling arguments similar to those in section
1.2.3. The scaling transformation (1.31) still holds, but now instead of (1.32) we assume
that the enstrophy flux is constant with wavenumber. Dimensionally, and analogously to
(1.32), we have

η ∼
v3
k

l3k
∼ λ3r−3, (1.65)

and the constancy of η gives r = 1 for the scaling exponent. The exponent n determining
the slope of the inertial range is given, as before, by n = −(2r+1) yielding the −3 spectra
of (1.64). The velocity at a particular wavenumber then scales as

vk ∼ η1/3k−1, (1.66)
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Figure 1.7 The energy spectrum
of two-dimensional turbulence. (Com-
pare with Fig. 1.3.) Energy supplied
at some rate ε is transferred to large
scales, whereas enstrophy supplied at
some rate η is transferred to small
scales, where it may be dissipated by
viscosity. If the forcing is localized at
a scale k−1

f then η ≈ k2
f ε.

and the time scales as
tk ∼ lk/vk ∼ η−1/3. (1.67)

We may also obtain (1.67) by substituting (1.64) into (1.24). Thus, the eddy turnover
time in the enstrophy range of two-dimensional turbulence is length-scale invariant. The
appropriate viscous scale is given by equating the inertial and viscous terms in (1.36).
Using (1.66) we obtain, analogously to (1.28a),

kν ∼
(
η1/3

ν

)1/2

. (1.68)

The enstrophy dissipation, analogously to (1.30) goes to a finite limit given by

˙̂Z = ν
∫
A
ζ∇2ζ dA ∼ νk4

νv
2
kν ∼ η, (1.69)

using (1.66) and (1.68). Thus, the enstrophy dissipation in two-dimensional turbulence
is (at least according to this theory) independent of the viscosity.

Energy inertial range

The energy inertial range of two-dimensional turbulence is quite similar to that of three-
dimensional turbulence, except in one major respect: the energy flows from smaller to
larger scales! Because the atmosphere and ocean both behave in some ways as two-
dimensional fluids, this has profound consequences on their behaviour, and is something
we return to in the next chapter. The upscale energy flow is known as the inverse cascade,
and the associated energy spectrum is, as in the three-dimensional case,

E(k) = Kεε2/3k−5/3 , (1.70)

where Kε is a nondimensional constant [not necessarily equal to K in (1.23)], and ε
is the rate of energy transfer to larger scales. Of course we now need a mechanism
to remove energy at large scales, else it will pile up at the scale of the domain and a
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statistical steady state will not be achieved. Introducing a linear drag, −rζ, into the
vorticity equation, as in (1.58), is one means to achieve this, and such a term may be
physically justified by appeal to Ekman layer theory (section ??). Although such a term
appears to be scale invariant, its effects will be felt only at large scales because at smaller
scales the timescale of the turbulence is much shorter than that of the friction. We may
estimate the scale at which the drag becomes important by equating the drag timescale
to the inertial timescale. The latter is given by (1.27), and equating this to the frictional
timescale r−1 gives

r−1 = ε−1/3k−2/3
r −→ kr =

(
r 3

ε

)1/2

, (1.71)

where kr is the frictional wavenumber. Frictional effects are important at scales larger
than k−1

r .

1.3.3 * More about the phenomenology

The phenomenology of two-dimensional turbulence is not quite as settled as the above
arguments imply. Note, for example, that timescale (1.67) is independent of length
scale, whereas in three dimensional turbulence the timescale decreases with length scale,
which seems more physical and more conducive to spectrally local interactions. A useful
measure of this locality is given by estimating the contributions to the straining rate,
S(k), from motions at all scales.

The strain rate scales like the shear, so that an estimate of the total strain rate is
given by

S(k) =
[∫ k
k0

E(p)p2 dp
]1/2

, (1.72)

where k0 is the wavenumber of the largest scale present. The contributions to the inte-
grand from a given wavenumber octave are given by∫ 2p

p
E(p′)p′3 d logp′ ∼ E(p)p3. (1.73)

In three dimensions, use of the −5/3 spectrum indicates that the contributions from each
octave below a given wavenumber k increase with wavenumber, being a maximum close
to k, and this is a posteriori consistent with the locality hypothesis. However, in two-
dimensional turbulence with a −3 spectrum each octave makes the same contribution.
That is to say, the contributions to the strain rate at a given wavenumber, as defined
by (1.72), are not spectrally local. This does not prove that the enstrophy transfer is
spectrally non-local, but nor does it build confidence in the theory.

Dimensionally the strain rate is the inverse of a time, and if this is a spectrally non-
local quantity then, instead of (1.24), we might use the inverse of the strain rate as an
eddy turnover time giving

τk =
[∫ k
k0

p2E(p)dp
]−1/2

. (1.74)
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This has the advantage over (1.24) in that it is a non-increasing function of wavenumber,
whereas if the spectrum is steeper than k−3 (1.24) implies a timescale increasing with
wavenumber. Using this in (1.63) gives a prediction for the enstrophy inertial range,
namely

E(k) = Kηη2/3 [log(k/k0)
]−1/3 k−3, (1.75)

which is similar to (1.64) except for a logarithmic correction. This expression is, of
course, spectrally non-local, in contradiction to our original assumption: this new pre-
diction has arisen by noting the spectral locality inherent in (1.72), and proposing a
reasonable, although ad hoc, solution.

The discussion above suggests that phenomenology of the forward enstrophy cascade
is on the verge of being internally inconsistent, and that the k−3 spectral slope might be
the shallowest limit that is likely to be actually achieved in nature or in any particular
computer simulation rather than a robust, universal slope. To see this argument, suppose
the detailed fluid dynamics attempts in some way to produce a slope shallower than
k−3; then, using (1.73), the strain is local and the shallow slope is forbidden by the
Kolmogorovian scaling results. However, if the dynamics organizes itself into structures
with a slope steeper than k−3 the strain is quite nonlocal. The fundamental assumption
of Kolmogorov scaling is not satisfied, and there is no internal inconsistency — the theory
simply doesn’t apply. The k−3 slope itself is at the margin.

There are two other potential problems with the theory of two-dimensional turbu-
lence that we have described. One is that enstrophy is only one of an infinity of invari-
ants of inviscid two-dimensional flow, and the theory takes no account of the presence
of others. The second is that, as in three-dimensional turbulence, if there is strong inter-
mittency the flow cannot be fully characterized by single enstrophy and energy cascade
rates. In spite of all this, the notions of a forward transfer of enstrophy and an inverse
transfer of energy are quite robust, and have considerable numerical support.

1.3.4 Numerical illustrations

Numerical simulations nicely illustrate both the classical phenomenology and its short-
comings. In the simulations shown in Fig. 1.8 and Fig. 1.9 the vorticity field is initialized
‘randomly’, meaning that there is no structure in the initial field, but with only a few
non-zero Fourier components, and the flow is allowed to freely evolve, save for the ef-
fects of a weak viscosity. Vortices soon form, and between them enstrophy is cascaded to
small scales where it is dissipated, producing a flat and nearly featureless landscape. The
energy cascade to larger scales is reflected in the streamfunction field, the length-scale
of which slowly grows larger with time. The vortices themselves form through a roll-up
mechanism, similar to that illustrated in Fig. ??, and their presence provides problems to
the phenomenology. Because circular vortices are nearly exact, stable solutions of the in-
viscid equations they can ‘store’ enstrophy, disrupting the relationship between enstrophy
flux and enstrophy itself that is assumed in the Kolmogorov-Kraichnan phenomenology
and providing a form of intermittency.

Nevertheless, some forced-dissipative numerical simulations suggest that the pres-
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Fig. 1.8 Nearly-free evolution of vorticity (left column) and streamfunction (right column) in
a doubly-periodic square domain (of length 2π) at times (from the top, and in units of inverse
vorticity) t = 0, t = 50 and t = 260, obeying the two-dimensional vorticity equation with no
forcing but with a weak viscous term. The initial conditions have just a few non-zero Fourier
modes with randomly generated phases, producing a maximum value of vorticity of about 3.
Kelvin-Helmholtz instability leads to vortex formation and roll-up (as in Fig. ??), and like-signed
vortices merge, ultimately leading to a state of just two oppositely-signed vortices. Between the
vortices enstrophy cascades to smaller scales. The scale of the stream function grows larger,
reflecting the transfer of energy to larger scales.
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Fig. 1.9 Snapshots of the vorticity field in decaying two-dimensional turbulence,
similar to Fig. 1.8, with time increasing left to right. The flow ultimately consists
of a small number of vortices whose trajectories are similar to that of interacting
point vortices, with occasional close encounters leading to vortex merger.

ence of vortices may be confined to scales close to that of the forcing, and if the res-
olution is sufficiently high then the −5/3 inverse cascade and −3 forward enstrophy
cascade may appear. Certainly, if the forcing is spectrally localized, then a well-defined
−5/3 spectrum robustly forms, as illustrated in Fig. 1.10. Typically, however, the foward
k−3 spectrum is more delicate, being influenced by the presence of coherent vortices.

1.4 * PREDICTABILITY OF TURBULENCE

A turbulent flow contains multiple scales of motion; the error is typically initially largely
confined to small scales, but the ‘predictability time’ of the atmosphere may be taken
as the time taken to contaminate all scales of motion. Let us suppose that errors on a
small scale will mostly contaminate the motion on the next larger scale (in a logarithmic

Figure 1.10 The energy spectrum in a
numerical simulation of forced-dissipative
two-dimensional turbulence. The fluid is
stirred at wavenumber kf and dissipated at
large scales with a linear drag, and there is
an k−5/3 spectrum at intermediate scales.
The arrows schematically indicate the di-
rection of the energy flow.
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sense), at that this contamination occurs on the local eddy turnover time. Eddies on this
larger scale then grow and affect the next larger scale, and the error field is so cascaded
upscale via local local triad interactions finally reaching the largest scales of the fluid.

Let us suppose that the error is initially confined to some small scale characterized
by the (inverse of) the wavenumber k1, as determined by the resolution of our observ-
ing network. For modes at that scale the error may be considered finite rather than
infinitesimal, and it will saturate and contaminate the next largest scale in a timescale
comparable to the eddy turnover time at that scale. Thus, in general, errors initially con-
fined to a scale k will contaminate the scale 2k after a time τk, with τk given by (1.24).
The total time taken for errors to propagate from the small scale k1 to the largest scale
k0 is then given by

T =
∫ k1

k0

τk d(lnk) =
∫ k1

k0

[k3E(k)]−1/2 d(lnk), (1.76)

treating the wavenumber spectrum as continuous. The logarithmic integral arises be-
cause the cascade proceeds logarithmically — error cascades from k to 2k in a time τk.
For an energy spectrum of the form E = Ak−n this becomes

T = 2
A1/2(n− 3)

[
k(n−3)/2

]k1

k0
. (1.77)

for n ≠ 3, and T = A−1/2 ln(k1/k0) for n = 3. If in two dimensional turbulence we
have n = 3 and A = η2/3, and if in three-dimensional turbulence we have n = 5/3 and
A = ε2/3, then the respective predictability times are given by:

T2d ∼ η−1/3 ln(k1/k0),

T3d ∼ ε−1/3k−2/3
0

. (1.78a,b)

As k1 → ∞, that is as the initial error is confined to smaller and smaller scales, pre-
dictability time grows larger for two dimensional turbulence (and for n ≥ 3 in general),
but remains finite for three dimensional turbulence.

1.5 * SPECTRUM OF A PASSIVE TRACER

Let us now consider, heuristically, the spectrum of a passive tracer that obeys

Dφ
Dt

= F[φ]+ κ∇2φ, (1.79)

where F[φ] is the stirring of the dye, and κ is its diffusivity, which in general differs
from the kinematic molecular viscosity ν. If φ is temperature, the ratio of viscosity
to diffusivity is called the Prandtl number and denoted σ , so that σ ≡ ν/κ. If φ is
a passive tracer, the ratio is sometimes called the Schmidt number, but we shall call it
the Prandtl number in all cases. We assume that the tracer variance is created at some
well-defined scale k0, and that κ is sufficiently small that dissipation only occurs at very
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small scales. (Note that dissipation only reduces the tracer variance, not the amount
of tracer itself.) The turbulent flow will generically tend to stretch patches of dye into
elongated filaments, in much the same way as vorticity in two-dimensional turbulence
is filamented — note that Fig. 1.5 applies just as well to a passive tracer in either two
or three dimensions as it does to vorticity in two dimensions. Thus we expect a transfer
of tracer variance from large-scales to small. If the dye is stirred at a rate χ then, by
analogy with our treatment of the cascade of energy, we posit that

Kχχ ∝
P(k)k
τk

, (1.80)

where P(k) is the spectrum of the tracer, k is the wavenumber, τk is an eddy timescale
and Kχ is a constant, not necessarily the same constant in all cases. (In the rest of the
section, Kolmogorov-like constants will be denoted K, differentiated with miscellaneous
superscripts or subscripts.) Let us first assume that τk is given by

τk = [k3E(k)]−1/2. (1.81)

Suppose that the turbulent spectrum is given by E(k) = Ak−n, then using (1.81), (1.80)
becomes

Kχχ =
P(k)k

[Ak3−n]−1/2 , (1.82)

and

P(k) = KχA−1/2χk(n−5)/2 . (1.83)

Note that the steeper the energy spectrum the shallower the tracer spectrum. If the
energy spectrum is steeper than −3 then (1.81) may not be a good estimate of the eddy
turnover time, and we use instead

τk =
[∫ k
k0

p2E(p)dp
]−1/2

, (1.84)

where k0 is the low-wavenumber limit of the spectrum. If the energy spectrum is
shallower than −3, then the integrand is dominated by the contributions from high
wavenumbers and (1.84) effectively reduces to (1.81). If the energy spectrum is steeper
than −3, then the integrand is dominated by contributions from low wavenumbers. For
k� k0 we can approximate the integral by [k3

0E(k0)]−1/2, that is the eddy-turnover time
at large scales, τk0 , given by (1.81). The tracer spectrum then becomes

P(k) = K′
χχτk0k

−1 , (1.85)

where K′
χ is a constant. In all these cases the tracer cascade is to smaller scales even if,

as may happen in two-dimensional turbulence, energy is cascading to larger scales.
The scale at which diffusion becomes important is given by equating the turbulent

time-scale τk to the diffusive time-scale (κk2)−1. This is independent of the flux of tracer,
χ, essentially because the equation for the tracer is linear. Determination of expressions
for these scales in two and three dimensions are left as problems for the reader.
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1.5.1 Examples of tracer spectra

Energy inertial range flow in three dimensions

Consider a range of wavenumbers over which neither viscosity nor diffusivity directly
influence the turbulent motion and the tracer. Then in (1.83) A = Kε2/3 where ε is the
rate of energy transfer to small scales , K is the Kolmogorov constant, and n = 5/3. The
tracer spectrum becomes

P(k) = K3d
χ ε−1/3χk−5/3. (1.86)

where K3d
χ is a (putatively universal) constant. It is interesting that the −5/3 exponent

appears in both the energy spectrum and the passive tracer spectrum. Using (1.81), this
is the only spectral slope for which this occurs. Experiments show that this range does,
at least approximately, exist with a value of K3d

χ of about 0.5–0.6 in three dimensions.

Inverse energy-cascade range in two-dimensional turbulence

Suppose that the energy injection occurs at a smaller scale than the tracer injection, so
that there exists a range of wavenumbers over which energy is cascading to larger scales
while tracer variance is simultaneously cascading to smaller scales. The tracer spectrum
is then

P(k) = K2d
χ ε−1/3χk−5/3, (1.87)

the same as (1.86), although ε is now the energy cascade rate to larger scales and the
constant K2d

χ does not necessarily equal K3d
χ .

Enstrophy inertial range in two-dimensional turbulence

In the forward enstrophy inertial range the eddy timescale is τk = η−1/3 (assuming of
course that the classical phenomenology holds). Directly from (1.80) the corresponding
tracer spectrum is then

P(k) = K2d*
χ η−1/3χk−1. (1.88)

The passive tracer spectrum now has the same slope as the spectrum of vorticity variance
(i.e., the enstrophy spectrum), which is perhaps comforting since the tracer and vorticity
obey similar equations in two dimensions.

The viscous-advective range of large Prandtl number flow

If σ = ν/κ � 1 (and in seawater σ ≈ 7) then there may exist a range of wavenumbers
in which viscosity is important but not tracer diffusion. The energy spectrum is then
very steep, and (1.85) will apply. The straining then comes from wavenumbers near
the viscous scale, so that for three dimensional flow the appropriate k0 to use in (1.85)
is the viscous wavenumber, and k0 = kν = (ε/ν3)1/4. The dynamical timescale at this
wavenumber is given by

τkν =
(
ν
ε

)1/2
, (1.89)

and using this and (1.85) the tracer spectrum in this viscous-advective range becomes

P(k) = K′
B

(
ν
ε

)1/2
χk−1. (1.90)
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This spectral form applies for kν < k < kκ , where kκ is the wavenumber at which
diffusion becomes important, found by equating the eddy turnover time given by (1.89)
with the diffusive timescale (κk2)−1. This gives

kκ =
(
ε
νκ2

)1/4
, (1.91)

and kκ is known as the Batchelor wavenumber (and its inverse is the Batchelor scale).
Beyond kκ , the diffusive flux is not constant and the tracer spectrum can be expected to
decay as wavenumber increases. A heuristic way to calculate the spectrum in this range
is to first note that in the diffusive range the flux of the tracer is no longer constant but
diminishes according to

dχ′(k)
dk

= −2κk2P(k). (1.92)

where χ′ is the wavenumber-dependent rate of tracer transfer. Let us nevertheless as-
sume that χ′ and P(k) are related by (1.80), except that now we take the eddy turnover
time to be a constant, given by (1.89). Thus,

KBχ′ =
P(k)k
τkκ

= P(k)k
(ν/ε)1/2

(1.93)

where KB is a constant. Using (1.92) and (1.93) we obtain

dχ′

dk
= −2KBκk

(
ν
ε

)1/2
χ. (1.94)

Solving this, using χ′ = χ for small k, gives

P(k) = KB

(
ν
ε

)1/2
χk−1 exp[−KB(k/kκ)2]. (1.95)

This reduces to (1.90) if k� kκ , and is known as the Batchelor spectrum.
In two dimensions the the viscous-advective range occurs for wavenumbers greater

than kν = (η/ν3)1/6. The appropriate timescale within this subrange by η−1/3, and
therefore gives a spectrum with the precisely the same form as (1.88). At sufficiently high
wavenumbers tracer diffusion becomes important, with the diffusive scale now given by
equating the eddy turnover time η−1/3 with the viscous timescale (κk2)−1. This gives
the diffusive wavenumber, analogous to (1.91), of kκ = (η/κ3)1/6. Using (1.94) and the
procedure above we then obtain an expression for the spectrum in the region k > kν ,
that is a two-dimensional analog of (1.95), namely

P(k) = K′
Bη

−1/3χk−1 exp[−K′
B(k/kκ)

2]. (1.96)

For k� kκ this reduces to (1.88), possibly with a different value of the Kolmogorov-like
constant.
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Figure 1.11 The energy spectra, E(k)
and passive tracer spectra P(k) in large
Prandtl number three-dimensional tur-
bulence (top) and two-dimensional tur-
bulence (bottom). In three dimensions
P(k) is given by (1.86) for k < kν and
by (1.95) for k > kν . In two dimensions,
if ktr marks the transition between a
k−5/3 inverse energy cascade and a k−1

forward enstrophy cascade, then P(k) is
given by (1.87) for k < ktr and by (1.96)
for k > ktr. In both two and three dimen-
sions the tracer spectra falls off rapidly
for k > kκ .

* The inertial-diffusive range of small Prandtl number flow

For small Prandtl number (ν/κ � 1) the energy inertial range may co-exist with a
range over which tracer variance is being dissipated, giving us the so-called inertial-
diffusive range. The tracer will begin to be dissipated at a wavenumber obtained by
equating a dynamical eddy turnover time with a diffusive time, and this gives a diffusive
wavenumber

k′κ =

(ε/κ3)1/4 in three dimensions,

(η/κ3)1/6 in two dimensions.
(1.97)

Beyond the diffusive wavenumber the flux of the tracer is no longer constant but dimin-
ishes according to (1.92).

Given a non-constant flux and an eddy-turnover time that varies with wavenumber
there is no self-evidently correct way to proceed. One way is to assume that χ and
P(k) are related by K′′

χ χ = P(k)k/τk [as in (1.93), but with a potentially different
proportionality constant] and with τk given by (1.81); that is, τk = ε−1/3k−2/3 in three
dimensional turbulence. Using this in (1.92) leads to

P(k) = K′′
χ χε−1/3k−5/3 exp[−(K′′

χ 3/2)(k/k′κ)4/3]. (1.98)

where χ is the tracer flux at the beginning of the tracer dissipation range. (A similar
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expression emerges in two dimensional turbulence.) However, given such a steep spec-
trum an argument based on spectral locality is sometimes thought to be suspect. Another
argument posits a particular relationship between the tracer spectrum and energy spec-
trum in the inertial-diffusive range, and this leads to

P(k) = K′′
B

3
χ0ε2/3κ−3k−17/3 = K′′

B χ0ε−1/3k−5/3g(k/kκ), (1.99)

where g(α) = α−4/3 and K′′
B is a constant.



CHAPTER

TWO

Geostrophic Turbulence and Baroclinic Eddies

Geostrophic turbulence may be defined as turbulence in stably-stratified flow that is in
near-geostrophic balance. The constraining effects of rotation and stratification that are
so important are captured in a simple and direct way by the quasi-geostophic equations
and these will be our main tool. Let us consider the effects of rotation first, then stratifi-
cation.

2.1 EFFECTS OF DIFFERENTIAL ROTATION IN TWO-DIMENSIONAL TURBULENCE

One of the effects of rapid rotation on a fluid is its two-dimensionalization, a manifes-
tation of the Taylor-Proudman effect. In the limit of motion of a scale much shorter
than the deformation radius, and with no topography, the quasi-geostrophic potential
vorticity equation reduces to the two-dimensional equation,

Dq
Dt

= 0 (2.1)

where q = ζ + f . This is the perhaps the simplest equation with which to study the
effects of rotation on turbulence. The effects of rotation are of course already playing a
role in enabling us to reduce a complex three-dimensional flow to two-dimensional flow.
Further, suppose that the Coriolis parameter is constant. Then (2.1) becomes simply the
two-dimensional vorticity equation

Dζ
Dt

= 0. (2.2)

Thus constant rotation has no effect on purely two-dimensional motion. Flow that is
already two-dimensional — flow on a soap film, for example — is unaffected by rotation.

31
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Suppose, though, that the Coriolis parameter is variable, as in f = f0+βy. Then we
have

D
Dt
(ζ + βy) = 0 or

Dζ
Dt

+ βv = 0. (2.3a,b)

If the dominant term in these equations is the one involving β, then we obtain βv = 0.
That is, there is no flow in the meridional direction and any flow is purely zonal. This
constraint may be interpreted as a consequence of angular momentum and energy con-
servation. A ring of fluid encircling the earth at a velocity u has an angular momentum
per unit mass a cosθ(u + Ωa cosθ) where θ is the latitude and a is the radius of the
earth. Moving this ring of air polewards (i.e., giving it a meridional velocity) while con-
serving its angular momentum requires its velocity and hence energy to increase. Unless
there is a source for that energy the flow is constrained to remain zonal.

2.1.1 Organization of turbulence into zonal flow

Scaling

Let us now consider how flow can become organized into zonal bands, from the perspec-
tive of two-dimensional turbulence. Re-write (2.1) in full as

∂ζ
∂t

+ u · ∇ζ + βv = 0. (2.4)

If ζ ∼ U/L and if t ∼ T then the respective terms in this equation scale as

U
LT

U2

L2 βU (2.5)

How time scales (i.e., advectively or with a Rossby wave frequency scaling) is deter-
mined by which of the other two terms dominates, and this in turn is scale dependent.
For large scales the β-term will be dominant, and at smaller scales the advective term is
dominant. The cross-over scale, or the ‘β-scale’ or ‘Rhines scale’ Lβ, is given by

Lβ ∼
√
U
β
. (2.6)

This is not a unique definition of the cross-over scale, since we have chosen the same
length scale that connects vorticity to velocity and to be the β-scale, and it is by no means
a priori clear that this should be so. If the scale is different, the three terms in (2.4) scale
as

Z
T

:
UZ
L

: βU (2.7)

where Z is the scaling for vorticity (i.e., ζ = OZ). Equating the second and third terms
gives the scale

LβZ =
Z
β
. (2.8)

In any case, (2.6) and (2.8) both indicate that at some large scale Rossby waves are likely
to dominate whereas at small scales advection, and turbulence, dominates.
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Fig. 2.1 Three estimates of the wave-turbulence cross-over, in wavenumber space.
The solid curve is the frequency of Rossby waves, proportional to β/k. The other
three curves are various estimates of the inverse turbulence timescale, or ‘tur-
bulence frequency’. These are the turbulent eddy transfer rate, proportional to
εk2/3 in a k−5/3 spectrum; the simple estimate Uk where U is an rms velocity; and
the mean vorticity, which is constant. Where the Rossby wave frequency is larger
(smaller) than the turbulent frequency, i.e., at large (small) scales, Rossby waves
(turbulence) dominate the dynamics.

Another heuristic way to derive (2.6) is by a direct consideration of timescales. The
Rossby wave frequency is β/k and an inverse advective timescale is Uk, where k is the
wavenumber. Equating these two gives an equation for the β-wavenumber

kβ ∼
√
β
U

. (2.9)

This equation is the inverse of (2.6), but note that factors of order unity cannot be
revealed by simple scaling arguments such as these. The cross-over between waves and
turbulence is reasonably sharp, as indicated in Fig. 2.1.

Phenomenology

Can we be more precise about the scaling, using the phenomenology of turbulence? Let
us suppose that the fluid is stirred at some well-defined scale kf, producing an energy
input ε. Then (assuming no energy is lost to smaller scales) energy cascades to large
scales at that same rate. At some scale, the β term in the vorticity equation will start to
make its presence felt. By analogy with the procedure for finding the dissipation scale
in turbulence, we can find the scale at which linear Rossby waves dominate by equating
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the inverse of the turbulent eddy turnover time to the Rossby wave frequency. The eddy-
turnover time is

τk = ε−1/3k−2/3, (2.10)

and equating this to the inverse Rossby wave frequency k/β gives the β-scale

kβ ∼
(
β3

ε

)1/5

. (2.11)

From a practical perspective this is less useful than (2.9), since it is generally much easier
to measure velocities than energy transfer rates, or even vorticity. Nonetheless, it is a
little more fundamental from the point of view of turbulence since one can often imagine
that ε is determined by processes largely independent of β, whereas the magnitude of
the eddies (i.e. U) at the energy containing scales is likely to be a function of β.

Generation of anisotropy

None of the measures discussed so far take into account the anisotropy inherent in
Rossby waves, nor do they suggest how the flow might organize itself into zonal struc-
tures. To understand that, let us note that energy transfer will be relatively inefficient at
those scales where linear Rossby waves dominate. But the wave-turbulence boundary is
not isotropic; the Rossby wave frequency is quite anisotropic, being given by

ωβ = −
βkx

kx2 + ky2 . (2.12)

If, as a first approximation, we suppose that the turbulent part of the flow remains
isotropic, the wave turbulence boundary is then given from the solution of

ε1/3k2/3 = βk
x

k2 (2.13)

where k is the isotropic wavenumber. Solving this gives expressions for the x- and y-
wavenumber components of the wave-turbulence boundary, namely

kxβ =
(
β3

ε

)1/5

cos8/5 θ, kyβ =
(
β3

ε

)1/5

sinθ cos3/5 θ, (2.14)

where the polar coordinate is parameterized by the angle θ = tan−1(ky/kx). This rather
uninformative-looking formula is illustrated in Fig. 2.3.

The region inside the dumbbell shapes in Fig. 2.3 is dominated by Rossby waves,
where the natural frequency of the oscillation is higher than the turbulent frequency. If
the flow is stirred at a wavenumber higher than this the energy will cascade to larger
scales, but because of the frequency mismatch the turbulent flow will be unable to effi-
ciently excite modes within the dumbbell. Nevertheless, there is still a natural tendency
of the energy to seek the gravest mode, and it may do this by cascading toward the
kx = 0 axis — that is, toward zonal flow. In this way zonally elongated structures are
produced.
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Fig. 2.2 Evolution of vorticity (greyscale, left column) and streamfunction (contour plots, right
column) in a doubly-periodic square domain (of length 2π) at times t = 0, t = 50 and t = 260 (in
units of inverse vorticity), obeying (2.4) with the addition of a weak viscous term on the right-
hand side. The initial conditions are the same as for Fig. 1.8, with maximum value of vorticity
about 3. As β = 3, the β-Rossby number, |ζ|/βL is about unity. Compared to Fig. 1.8, vortex
formation is inhibited and there is tendency toward zonal flow.
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Figure 2.3 The anisotropic wave-
turbulence boundary kβ, in wave-vector
space calculated by equating the turbulent
eddy transfer rate, proportional to k2/3 in
a k−5/3 spectrum, to the Rossby wave fre-
quency βkx/k2, as in (2.14). Within the
dumbbell Rossby waves dominate and en-
ergy transfer is inhibited. The inverse cas-
cade plus Rossby waves thus leads to a
generation of zonal flow.
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Slight variations on this temes are produced by using different expressions for the
‘turbulence frequency’. For example, if we use the simple expression Uk then the wave
turbulence boundary is given from

Uk = βk
x

k2 , (2.15)

which has solutions that may be written as

kxβ =
(
β
U

)1/2
cos3/2 θ, kyβ =

(
β
U

)1/2
sinθ cos1/2 θ. (2.16a,b)

A plot of this is very similar to Fig. 2.3.
Does this putative mechanism actually work? Fig. 2.4 shows the freely evolving (un-

forced, inviscid) energy spectrum in a simulation on a β–plane, with an initially isotropic
spectrum. The energy implodes, cascading to larger scales but avoiding the region inside
the dumbbell and piling up at kx = 0. A similar picture emerges in a forced-dissipative
simulations, and with zonally-periodic boundary conditions these show a robust ten-
dency to produce zonally-elongated structures and jets (Fig. 2.5). In closed domains,
such as occur in the earth’s ocean, the production of such jets is interrupted by the
meridional boundaries.

2.2 STRATIFIED GEOSTROPHIC TURBULENCE

2.2.1 Quasi-geostrophic flow as an analogue to two-dimensional flow

Now let us consider stratified effects in a simple setting, namely the quasi-geostrophic
equations with constant Coriolis parameter and constant stratification. The (dimen-
sional) unforced and inviscid governing equation may then be written

Dq
Dt

= 0, q = ∇2ψ+ Pr2 ∂2ψ
∂z2 , (2.17a)



2.2 Stratified Geostrophic Turbulence 37

Fig. 2.4 Evolution of the energy spectrum in a freely-evolving two-dimensional
simulation on the β-plane. The panels show contours of energy in wavenumber
(k, l) space. The initial spectrum (a) is isotropic. The energy ‘implodes’, but its
passage to large scales is impeded by the β-effect, and panels (b) and (c) show the
spectrum at later times, illustrating the dumbbell predicted by (2.14) and Fig. 2.3.

where Pr = f0/N is the Prandtl ratio (and Pr/H is the inverse of the deformation ra-
dius) and D/Dt = ∂/∂t + u · ∇ is the two-dimensional material derivative. The vertical
boundary conditions are

D
Dt

(
∂ψ
∂z

)
= 0, at z = 0,H. (2.17b)

These equations are analogous to the equations of motion for purely two-dimensional
flow. In particular, with periodic lateral boundary conditions, or conditions of no-normal
flow, there are two quadratic invariants of the motion, the energy and the enstrophy,
which are obtained by multiplying (2.17a) by ψ and q and integrating over the domain.
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Fig. 2.5 Left: Gray-scale image of zonally average zonal velocity (u) as a function
of time and latitude (Y), produced in a simulation forced around wavenumber 80
and with kβ =

√
β/U ≈ 10 (in a domain of size 2π). Right: Values of ∂2u/∂y2 as a

function of latitude, late in the integration. Jets form very quickly from the random
initial conditions, and are subsequently quite steady.

The conserved energy is

dÊ
dt

= 0, Ê =
∫
V

[
(∇ψ)2 + Pr2

(
∂ψ
∂z

)2]
dV, (2.18)

where the integral is over a three-dimensional domain. The enstrophy is conserved at
each vertical level, and of course the volume integral is also conserved, namely

dẐ
dt

= 0, Ẑ =
∫
V
q2 dV =

∫
V

[
∇2ψ+ Pr2

(
∂2ψ
∂z2

)]2

dV. (2.19)

The analogy with two-dimensional flow is even more transparent if we further rescale
the vertical coordinate by 1/Pr, and so let z′ = z/Pr. Then the energy and enstrophy
invariants are:

Ê =
∫
(∇3ψ)2 dV, Ẑ =

∫
q2dV =

∫
(∇2

3ψ)
2 dV (2.20)

where ∇3 = i ∂/∂x + j ∂/∂y +k ∂/∂z′. The invariants then have almost same form as the
two-dimensional invariants, but with a three-dimensional Laplacian operator instead of
a two-dimensional one.

Given these invariants, we should expect that any dynamical behaviour that occurs
in the two-dimensional equations that depends solely on the energy/enstrophy constraints
should have an analogy in quasi-geostrophic flow. In particular, the transfer of energy
to large-scales and enstrophy to small scales will also occur in quasi-geostrophic flow
with, in so far as these transfers are effected by a local cascade, corresponding spectra of
k−5/3 and a k−3. However, the wavenumber is the now three-dimensional wavenumber,
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appropriately scaled by the Prandtl ratio in the vertical. Interestingly, then, the energy
cascade to larger horizontal scales is accompanied by a cascade to larger vertical scales
— a barotropization of the flow. This is an important and robust process in geostrophic
turbulence and we come back to it later. However, the analogy should not be taken
too far, because in quasi-geostrophic flow the potential vorticity is advected only by the
horizontal flow. Thus, the dynamics of quasi-geostrophic turbulence will not in general
be isotropic in three-dimensional wavenumber. To examine the detailed dynamical be-
haviour of quasi-geostrophic turbulence, we turn to a simpler model, that of two-layer
flow

2.2.2 Two-layer geostrophic turbulence

Let us now consider flow in two layers of equal depth, governed by the quasi-geostrophic
equations with (for now) β = 0, namely

∂qi
∂t

+ J(ψi, qi) = 0, i = 1,2, (2.21)

where

q1 = ∇2ψ1 +
1
2
k2

d(ψ2 −ψ1), q2 = ∇2ψ2 +
1
2
k2

d(ψ1 −ψ2), (2.22a)

J(a, b) = ∂a
∂x
∂b
∂y

− ∂b
∂y
∂a
∂x
,

1
2
k2

d =
2f 2

0

g′H
≡ 4f 2

0

N2H2 . (2.22b)

The wavenumber kd is inversely proportional to the baroclinic radius of deformation,
and the two equivalent expressions given are appropriate in a layered model and a level
model, respectively. The equations conserve the total energy,

dÊ
dt

= 0, Ê = 1
2

∫ [
(∇ψ1)2 + (∇ψ2)2 +

1
2
k2

d(ψ1 −ψ2)2
]

dA, (2.23)

and the enstrophy in each layer

dẐ1

dt
= 0, Ẑ1 =

∫
A
q2

1 dA, (2.24)

dẐ2

dt
= 0, Ẑ2 =

∫
A
q2

2 dA. (2.25)

The first two terms in the energy expression represent the kinetic energy, and the last
term is the available potential energy, proportional to the variance of temperature.

Baroclinic and barotropic decomposition

Define the barotropic and barotropic streamfunctions by

ψ ≡ 1
2
(ψ1 +ψ2), τ ≡ 1

2
(ψ1 −ψ2). (2.26)
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Then the potential vorticities for each layer may be written:

q1 = ∇2ψ+ (∇2 − k2
d)τ (2.27a)

q2 = ∇2ψ− (∇2 − k2
d)τ (2.27b)

and the equations of motion may be rewritten as evolution equations for ψ and τ as
follows:

∂
∂t
∇2ψ+ J(ψ,∇2ψ)+ J(τ, (∇2 − k2

d)τ) = 0 (2.28a)

∂
∂t
(∇2 − k2

d)τ + J(τ,∇2ψ)+ J(ψ, (∇2 − k2
d)τ) = 0 (2.28b)

We note the following:

(i) ψ and τ are like vertical modes. That is, ψ is the barotropic mode with a ‘vertical
wavenumber’, kz, of zero, and τ is a baroclinic mode with a vertical wavenumber
of one.

(ii) Just as purely two dimensional turbulence can be considered to be a plethora of in-
teracting triads, whose two-dimensional vector wavenumbers sum to zero, it is clear
from (2.28b) geostrophic turbulence may be considered to be similarly comprised
of a sum of interacting triads. The types of triad interaction are:

(ψ,ψ)→ ψ, (τ, τ)→ ψ, (ψ,τ)→ τ. (2.29)

The first kind is a barotropic triad, for it involves only the barotropic mode. The
other two are examples of a baroclinic triad. If a barotropic mode has a vertical
wavenumber of zero, and a baroclinic mode has a vertical wavenumber of plus or
minus one, then the vertical wavenumbers of the triad interactions must sum to
zero. There is no triad that involves only the baroclinic mode, as we may see from
the form of (2.28). (If the layers are of unequal depths, then purely baroclinic triads
do exist.)

(iii) Wherever the Laplacian operator acts on τ, it is accompanied by −k2
d. That is, it is as

if the effective horizontal wavenumber (squared) of τ is shifted, so that k2 → k2+k2
d.

Conservation properties

Multiplying (2.28a) by ψ and (2.28b) by τ and horizontally integrating over the domain,
assuming once again that the domain is either periodic or has solid walls, gives

T̂ =
∫
A
(∇ψ)2 dA, dT̂

dt
=
∫
A
ψJ(τ, (∇2 − k2

d)τ)dA (2.30a)

Ĉ =
∫
A
[(∇τ)2 + k2

dτ
2]dA,

dĈ
dt

=
∫
A
τJ(ψ, (∇2 − k2

d)τ)dA. (2.30b)
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Here, T̂ is the energy associated with the barotropic flow and Ĉ is the energy of the
baroclinic flow. An integration by parts shows that∫

A
ψJ(τ, (∇2 − k2

d)τ)dA = −
∫
A
τJ(ψ, (∇2 − k2

d)τ)dA, (2.31)

and therefore
dÊ
dt

= d
dt
(T̂ + Ĉ) = 0. (2.32)

That is, total energy is conserved.
An enstrophy invariant is obtained by multiplying (2.28a) by ∇2ψ and (2.28b) by

(∇2 − k2
d)τ and integrating over the domain and adding the two expressions. The result

is
dẐ
dt

= 0, Ẑ =
∫
A
(∇2ψ)2 +

[
(∇2 − k2

d)τ
]2

dA. (2.33)

This also follows from (2.24).
Just as for two-dimensional turbulence, we may define the spectra of the energy and

enstrophy. Then, with obvious notation, for the energy we have

T̂ =
∫
T (k)dk and Ĉ =

∫
C(k)dk, (2.34)

and the enstrophy spectrum Z(k) is related to the energy spectra by

Ẑ =
∫
Z(k)dk =

∫ [
k2T (k)+ (k2 + k2

d)C(k)
]

dk. (2.35)

which is analogous to the relationship between energy and enstrophy in two-dimensional
flow. We thus begin to suspect that the phenomenology to two-layer turbulence is closely
related to, but perhaps richer than, that of two-dimensional turbulence.

2.2.3 Triad interactions

Two types of triad interactions are possible:

Barotropic triads: An interaction that is purely barotropic (i.e., as if τ = 0) con-
serves T̂ , the barotropic energy, and the associated enstrophy

∫
k2T (k)dk, and

a barotropic triad behaves as purely two-dimensional flow. Explicitly, the con-
served quantities are

Energy:
d
dt

(
T (k)+T (p)+T (q)

)
= 0, (2.36)

Enstrophy:
d
dt

(
k2T (k)+ p2T (p)+ q2T (q)

)
= 0. (2.37)
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Baroclinic triads: Baroclinic triads involve two baroclinic wavenumbers (say p,q) in-
teracting with a barotropic wavenumber (say k). The energy and enstrophy
conservation laws for this triad are

Energy:
d
dt

(
T (k)+C(p)+C(q)

)
= 0, (2.38a)

Enstrophy:
d
dt

(
k2T (k)+ (p2 + k2

d)C(p)+ (q2 + k2
d)C(q)

)
= 0. (2.38b)

Consider the following four cases of baroclinic triad:

I. (p, q)� kd. Then neglect k2
d in (2.38a) and (2.38b), and a baroclinic triad behaves

like a barotropic triad, for (2.38b) is similar to (2.37). Alternatively, but equivalently,
reconsider the layer form of the equations,

∂qi
∂t

+ J(ψi, qi) = 0 (2.39)

where

qi = ∇2ψi + k2
d(ψj −ψi) ≈ ∇2ψi i = 1,2, j = 3− i (2.40)

In this case, each layer is decoupled from the other. Enstrophy is cascaded to small
scales and, were there to be an energy source at small scales, energy would be trans-
ferred upscales until it reached a scale comparable with the deformation scale. Note
that the transfer of enstrophy to small scales in a purely two-dimensional fashion
depends on the two-layer nature of the flow. In reality, the small scales of a continu-
ously stratified flow may not be representable by a two-layer model: remember that
in a continuously stratified quasi-geostrophic model the enstrophy cascade occurs
in three-dimensional wavenumber. Thus, as the horizontal scales become smaller, so
does the vertical scale and higher deformation radii will start to play a role.

II. (p, q, k)� kd. The energy and enstrophy conservation laws collapse to:

d
dt

(
C(p)+C(q)

)
= 0. (2.41)

That is to say, energy is conserved among the baroclinic modes alone, with the
barotropic mode k mediating the interaction. There is no constraint preventing
the transfer of baroclinic energy to smaller scales, and no production of barotropic
energy at k� kd.

III. (p, q, k) ∼ kd. In this case both baroclinic and barotropic modes are important.
Suppose that we define the pseudo-wavenumber k′ by k′2 ≡ k2 + k2

d for a baroclinic
mode and k′2 = k2 for a barotropic mode, and similarly for p′ and q′. Then energy
and enstrophy conservation can be written

d
dt

(
E(k)+E(p)+E(q)

)
= 0, (2.42a)
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Fig. 2.6 Schema of idealized two-layer baroclinic turbulence. The horizontal axis represents
horizontal wavenumber, and the vertical variation is decomposed into two vertical modes —
the barotropic and first baroclinic. Large-scale forcing maintains the available potential energy,
and so provides energy to the baroclinic mode at very large scales. At these large scales, the
equation for the baroclinic streamfunction is approximately that of a passive tracer, and so
energy is transferred to smaller scales. It is also transferred to barotropic energy, at horizontal
scales comparable to and larger than the deformation radius (this is baroclinic instability) and
thence to larger barotropic scales. The entire process of energy transfer may be thought of
as a generalized inverse cascade in which the energy passes to smaller pseudo-wavenumber
k′2 ≡ k2 + k2

d. At scales smaller than the first deformation radius the layers are decoupled
and enstrophy in each layer cascades to smaller scales. The two-layer model may become less
accurate for such small scales, because of the influence of higher baroclinic modes not present
in a two-layer model.

d
dt

(
k′2E(k)+ p′2E(p)+ q′2E(q)

)
= 0 (2.42b)

where E(k) is the total energy (barotropic plus baroclinic) of the particular mode.
These are formally identical with the conservation laws for purely two-dimensional
flow and so we expect energy to seek the gravest (smallest pseudo-wavenumber)
mode. Since the gravest mode has kd = 0 this implies a barotropization of the flow.

IV. Baroclinic Instability. Baroclinic instability in the classic two-layer problem concerns
the instability of a flow with vertical but no horizontal shear. This is like a triad
interaction for which p� (k, q, kd). The conservation laws are,

d
dt

(
T (k)+C(p)+C(q)

)
= 0,

d
dt

(
k2T (k)+ k2

dC(p)+ (q2 + k2
d)C(q)

)
= 0.

(2.43)

From these, and with k2 ≈ q2, we derive

k2Ċ(q) = (k2
d − k2)Ṫ (k). (2.44)
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Baroclinic instability requires that both Ċ(q) and Ṫ (k) be positive. This can only
occur if

k2 < k2
d. (2.45)

Thus, there is a high-wavenumber cut-off for baroclinic instability. This cut-off arises
solely from considerations of energy and enstrophy conservation, and is not de-
pendent on linearizing the equations and looking for exponentially growing normal
mode instabilities.

For small scales, i.e., k2 � k2
d, the potential vorticity in each layer is, with β = 0,

q1 = ∇2ψ1 +
1
2
k2

d(ψ2 −ψ1) ≈ ∇2ψ1, (2.46a)

q2 = ∇2ψ2 +
1
2
k2

d(ψ1 −ψ2) ≈ ∇2ψ2. (2.46b)

Thus, each layer is decoupled from the other. Thus, enstrophy will cascade to smaller
scales and, should there be an energy source at scales smaller than the deformation scale
it will cascade to larger scales. However, baroclinic instability (of the mean flow) occurs
at scales larger than the deformation radius. Thus, energy extracted from the mean flow
is essentially trapped at scales larger than the deformation scale.

Summary of phenomenology

Putting together the considerations above leads to the following picture of geostrophic
turbulence in a two-layer system (and see Fig. 2.6). At large horizontal scales we imag-
ine some source of baroclinic energy, which in the atmosphere might be the differential
heating between pole and equator, or in the ocean might be the wind and surface heat
fluxes. Baroclinic instability effects a nonlocal transfer of energy to the deformation
scale, where both baroclinic and barotropic modes are excited. From here there is an
enstrophy cascade in each layer to smaller and smaller scales, until eventually the scale
is small enough so that non-geostrophic effects become important and enstrophy is scat-
tered by three-dimensional effects. At scales larger than the deformation radius, there
is an inverse barotropic cascade of energy to larger scales. The energy of the large-scale
barotropic modes is eventually dissipated by boundary layer effects such as Ekman drag.
These ideas do not precisely apply to either atmosphere or ocean. In the latter, the tur-
bulence is quite inhomogeneous except perhaps in the Antarctic Circumpolar Current.
In the atmosphere, the deformation radius is almost as large as the Rhines scale, leaving
little room for an inverse cascade. However, the atmosphere does display k−3 spectra
at scales similar to and somewhat smaller than the deformation radius, as in Fig. 2.7,
and analysis of this indicates that it may indeed be associated with a forward cascade of
enstrophy.

2.3 * PHENOMENOLOGY OF BAROCLINIC EDDIES IN THE ATMOSPHERE AND OCEAN

In the remaining sections of this chapter we take a phenomenological approach, illus-
trated by numerical experiments and observations, to the problem of baroclinic eddies in
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Figure 2.7 Energy spectra of
the zonal and meridional wind near
the tropopause, from thousands of
commercial aircraft measurements
between 1975 and 1979. The
meridional spectrum is shifted one
decade to the right. (From Gage
and Nastrom 1986)

the atmosphere and ocean. We draw from our treatment of geostrophic turbulence but
by being a little less precise we are able to travel farther, for we spend less time looking
at the map (but with a concomitant danger that we lose our way).

2.3.1 The Magnitude and Scale of Baroclinic Eddies

How big, in both amplitude and scale, do baroclinic eddies become? Suppose that the
time-mean flow is given, and that it is baroclinically unstable. Eddies will grow, initially
according to linear baroclinic instability theory, but they cannot and do not continue
to amplify: they ultimately equilibrate, and this by way of nonlinear mechanisms. The
eddies will extract energy from the mean flow, but at the same time the available energy
of the mean flow is being replenished by external forcing (i.e., the maintenance of an
equator–pole temperature gradient by radiative forcing in the atmosphere, and wind
and buoyancy forcing at the surface in the ocean). Thus, we cannot a priori determine
the amplitude of baroclinic eddies by simply assuming that all of the available potential
energy in the mean flow is converted to eddying motion. To close the problem we find
we need to make three, not necessarily independent, assumptions:

(i) An assumption about the magnitude of the baroclinic eddies;
(ii) An assumption relating eddy kinetic energy to eddy available potential energy;
(iii) An assumption about the horizontal scale of the eddies.
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Baroclinic eddies extract available potential energy (APE) from the mean flow, and
it is reasonable to suppose that an eddy of horizontal scale Le can extract, as an upper
bound, the APE of the mean flow contained within that scale. The APE is proportional
to the variation of the buoyancy field so that

(∆b′)2 ∼ |∆b|2 ∼ L2
e|∇b|2 (2.47)

where ∆b is the variation in the buoyancy over the horizontal scale L e. (For simplicity
we stay with the Boussinesq equations, and b = −gδρ/ρ0. However, we might easily
apply this to an ideal-gas atmosphere with b = gδθ/θ0.) Equivalently, we might simply
write

b′ ∼ Le|∇b| , (2.48)

which arises from a mixing-length approach. Supposing that the temperature gradient
is mainly in the y-direction then, using thermal wind, we have

b′ ∼ Lef
∂u
∂z

and v′τ ∼ u, (2.49a,b)

where v′τ is an estimate of the shear (multiplied by the depth scale) of the eddying flow.
[These estimates are the same as (??), with u replacing U .]

Our second assumption is to relate the barotropic eddy kinetic energy to the eddy
available potential energy, and the most straightforward one to make is that there is
a rough equipartition between the two. This assumption is reasonable because in the
baroclinic lifecycle (or baroclinic inverse cascade) energy is continuously transferred
from eddy available potential energy to eddy kinetic energy, and the assumption is then
equivalent to supposing that the relevant eddy magnitude is always proportional to this
rate of transfer. Thus we assume v2

ψ ∼ (b′/N)2 or

v′ψ ∼
b′

N
. (2.50)

Finally, the scale of the eddies is determined by the extent to which the eddies might
grow through nonlinear interactions. As we discussed earlier, possibilities for this scale
include the deformation radius itself (if the inverse cascade is weak) or the Rhines scale
(if the inverse cascade is slowed by the beta effect), or even the domain scale if neither
of these apply.

Some consequences

These simple manipulations have some very interesting consequences. Using (2.49) and
(2.50) we find

v′ψ ∼
fLe
NH

u ≈ Le

Ld
u (2.51)

where Ld = NH/f0 is the deformation radius and u is the amplitude of the mean baro-
clinic velocity, that is the mean shear multiplied by the height scale. This important
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relationship relates the magnitude of the eddy kinetic energy to that of the mean. In the
atmosphere the scale of the motion not much larger than the deformation radius (which
is about 1000 km) the eddy and mean ksinetic energies are, consistently, comparable to
each other. In the ocean the deformation radius (about 50 km over large areas) is sig-
nificantly smaller than the scale of mesoscale eddies (which typically might be more like
200 km), and observations consistently reveal that the eddy kinetic energy is an order of
magnitude larger than the mean kinetic energy.

One other important and somewhat counter-intuitive result concerns the timescale
of eddies. From (2.51) we have

TE ∼
Le

v′ψ
∼ Ld

u
, (2.52)

and this is simply the Eady timescale. That it, the eddy timescale (at the scale of the
largest eddies) is independent of the process that ultimately determines the spatial scale
of those eddies; if the eddy length scale increases somehow, perhaps because friction or
β are decreased, the velocity scale increases in proportion.

Let us now consider various aspects of baroclinic eddies in the atmosphere and the
ocean.

2.3.2 Baroclinic Eddies in the Atmosphere

Amplitude and Scale

We saw in section ?? that baroclinic instability in the atmosphere occurs predominantly
in the troposphere, i.e., in the lowest 10 km or so of the atmosphere, with the higher
stratification of the eponymous stratosphere inhibiting instability. In the mid-latitude
troposphere the vertical shear and the stratification are also relatively uniform which
is why fairly simple models, such as the two-layer model or the Eady model (with the
addition of the β-effect) are reasonable first-order models.

The mean pole-equator temperature gradient is about 40 K and the deformation ra-
dius NH/f is about 1000 km. The Rhines scale,

√
urms/β is a little larger than this, per-

haps 2000 km, and is similar to the width of the main mid-latitude baroclinic zone which
lies between about 40° and 65°, in either hemisphere. Given these, and especially given
that the maximum wavelength for instability occurs at scales somewhat larger than the
deformation radius, there is little prospect of an extended upscale cascade, and for this
reason the earth’s atmosphere has comparable eddy kinetic and mean kinetic energies.

The baroclinic lifecycle

The baroclinic lifecycle of geostrophic turbulence, sketched schematically in Fig. 2.6,
can be nicely illustrated by way of numerical initial value problems, and we describe
two such. The first is very idealized: take a doubly-period quasi-geostrophic model on
the f -plane, initialize it with baroclinic energy at large horizontal scales, and then let
the flow freely evolve. Fig. 2.8 shows the results. The flow, initially concentrated in high
vertical wavenumbers to best illustrate the energy transfer, is baroclinically unstable,
and energy is transferred to barotropic flow at wavenumbers close to the first radius of
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Horizontal Wavenumber

Fig. 2.8 A numerical simulation of a very idealized baroclinic lifecyle, showing contours of
energy in spectral space at successive times. Initially, there is baroclinic energy at low horizontal
wavenumber, as in a large-scale shear. Baroclinic instability transfers this energy to barotropic
flow at the scale of the deformation radius, and this is followed by a barotropic inverse cascade
to large scales. Most of the transfer to the barotropic mode in fact occurs quite quickly, between
times 11 and 14, but the ensuing barotropic inverse cascade is slower. The entire process may
be thought of as a generalized inverse cascade. The stratification (N2) is uniform, and the first
deformation radius is at about wavenumber 15. There is no friction in the simulation, except for
a small hyperviscosity to remove small scale noise. Times are in units of eddy turnover time.

deformation, here at about wavenumber 15. Energy then slowly cascades back to large
scales in a predominantly barotropic inverse cascade, piling up at the largest scales much
as in decaying, two-dimensional turbulence. Nearly all of the initial baroclinic energy
is converted to barotropic, eddy kinetic energy and, even without any surface friction,
the flow evolves to a baroclinically stable state. Couched in these terms, it is easy to see
the baroclinic lifecyle as a form of baroclinic inverse cascade, with an energy transfer to
large total wavenumber, Ktot, that is made up of contributions from both horizontal and
vertical wavenumbers:

K2
tot = K2

h + k2
dm

2 (2.53)

wherem is the vertical and Kh the horizontal wavenumber. As we noted earlier, the twin
constraints of energy and enstrophy consevation prevent the excitation of horizontal
scales with very large horizontal wavenumbers, and so the lifecyle proceeds through
wavenumbers at the deformation scale.

The results of second, and more realistic, initial value problem are illustrated in Fig.
2.9. Here, the atmospheric primitive equations on a sphere are integrated forward,
beginning from a baroclinically unstable zonal flow, plus a small-amplitude disturbance
at zonal wavenumber six. The disturbance grows rapidly through baroclinic instability,
accompanined by a conversion of energy initial from the zonal mean potential energy
to eddy available potential energy (EAPE), and then from EAPE to eddy kinetic energy
(EKE), and finally from EKE to zonal kinetic energy (ZKE). The last stage of this corre-
sponds to the barotropic inverse cascade of quasi-geostrophic theory, and because of the
presence of a β-effect the flow becomes organized into a zonal jet. The parameters in
the earth’s atmosphere are such that there is only one such jet, and in the lower panel of
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Figure 2.9 Top: Energy conversion and dissipa-
tion processes in a numerical simulation of an ide-
alized atmospheric baroclinic lifecycle, simulated
with a GCM Bottom: Evolution of the maximum
zonal-mean velocity. AZ and AE are zonal and
eddy available potential energies, and KZ and KE

the corresponding kinetic energies. Initially baro-
clinic processes dominate, with conversions from
zonal to eddy kinetic energy and then eddy kinetic
to eddy available potential energy, followed by the
barotropic conversion of eddy kinetic to zonal ki-
netic energy. The latter process is reflected in the
increase of the maximum zonal-mean velocity at
about day 10.

Fig. 2.9 we see its amplitude increase quickly from days 10 though 12, associated with
the conversion of EKE to ZKE.

Of course, the atmosphere is never in a zonally uniform state as used in our baroclinic
instability studies or the liefecycle study. At any given time, finite amplitude eddies exist
and these provide a finite amplitude perturbation to the baroclinically unstable zonal
flow, and thus we will rarely, if ever, see an exponentially growing normal mode. Fur-
thermore, given any instantaneous atmospheric state, zonally symmetric or otherwise,
the fastest growing (linear) instability is not necessarily exponential but may be ‘non-
modal’, with a secular or linear growth that, over some finite time period and in some
given norm, is much more rapid than exponential. A baroclinically turbulent atmosphere
is of course maintained because of the underlying presence of baroclinic instability, and
the classic baroclinic instability problems and nonlinear lifecyles illustrate, in an ide-
alized way, the continuous growth, maturation and decay of eddies embedded in that
flow.

2.3.3 Baroclinic Eddies in the Ocean

Basic ideas
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Baroclinic instability was first developed as a theory for midlatitude synoptic-scale insta-
bilities in the atmosphere and the original, now classic, problems are accordingly set in
a zonally re-entrant channel. The ocean, apart from the Antarctic Circumpolar Current
(ACC), is not zonally re-entrant. However, the ocean is driven by buoyancy and wind-
forcing at the surface, and these combine to produce a region of enhanced stratification
and associated shear in the ocean in the upper 500–1000 m or so, in the ‘thermocline’,
as discussed more fully in chapter ?? (e.g., Fig. ??). The sloping isopycnals indicate that
there is a pool of available potential energy that might be converted to kinetic energy,
and so that the ocean is potentially baroclinically unstable. Satellite observations indi-
cated that baroclinic eddies are almost ubiquitous in the mid- and high-latitude oceans,
two particularly eddy-rich regions being the areas in and surrounding intense western
boundary currents, such as the Gulf Stream, and in the ACC.

In addition to the geometry, the main differences between the oceanic and atmo-
spheric problems are:

(i) In the ocean, the shear and the stratification are not uniform between two rigid
lids, nor even uniform between one rigid lid and a structure like the tropopause.
Instead, both stratification and shear are largest in the upper ocean, decaying into
a quiescent and nearly unstratified abyss.

(ii) The first radius of deformation is much smaller than the scale of the large-scale flow
— that is, of the gyres or the large-scale overturning circulation.

A consequence of the first item is that the amplitude of the growing waves is also largely
concentrated in the upper ocean, as we saw in Fig. ??. Regarding item (ii), we can
estimate the oceanic deformation radius as

Ld =
NH
f

≈ 10−2 × 500
10−4 ≈ 50 km. (2.54)

More precisely, in quasi-geostrophic theory we may define the deformation radii by so-
lution of the eigenvalue problem

∂
∂z
f 2

0

N2
∂φn
∂z

+ Enφn = 0. (2.55)

The successive eigenvalues, En, are related to the successive deformation radii by L2
dn =

1/En, and the results of a similar calculation are given in Fig. 2.10. Note that in uniform
stratification the deformation radius as defined by (2.55) and displayed in Fig. 2.10 is
a factor of π smaller than the simple estimate NH/f , so that the most baroclinically
unstable waves have a wavelength several times Ld1. Nevertheless, we may expect baro-
clinic instability to occur on a scale much smaller than that in the atmosphere, and much
smaller than the scale of the domain.

Amplitude and Scale

The consequences of this small deformation radius on the lifecycle and finite-amplitude
equilibration of oceanic baroclinic eddies are potentially far-reaching, the most impor-
tant of which is that there is more scope for an inverse cascade than in the atmosphere,
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Fig. 2.10 The oceanic first deformation radius Ld, calculated by using the ob-
served stratification from the eigenproblem:
∂2φ/∂z2+(N2(z)/c2)φ = 0 with φ = 0 at z = 0 and z = −H, where H is the ocean
depth and N is the observed buoyancy frequency. The deformation radius is given
by Ld = c/f where c is the first eigenvalue and f is the latitudinally varying Coriolis
parameter. Near equatorial regions are excluded, and regions of ocean shallower
than 3500 m are shaded. Variations in Coriolis parameter are responsible for much
of large-scale variability, although weak stratification also reduces the deformation
radius at high latitudes.

and indeed observations indicate that the horizontal scale of the eddies is typically a few
to several times larger than the local deformation radius itself. The situation is not clear
cut, however: the eddy scale does seem to be somewhat larger than the deformation
scale, but some observations indicate that the eddy size nevertheless scales with the lo-
cal deformation radius, suggesting that the eddy scale may be set by the instability scale
and not an inverse cascade. In any case, suppose then that an ocean eddy is of horizontal
scale 200 km, and that it sits in the subtropical gyre where the mean temperature gradi-
ent is 10−5 K m−1, that the mean shear and ensuing baroclinic activity is mainly confined
to the upper 1000 m of the ocean, and that the deformation radius is 50 km. The tem-
perature gradient corresponds to a temperature difference of about 20 K across 2000 km,
a horizontal buoyancy gradient of about 2× 10−9 s−2 (using the simple equation of state
ρ = ρ(1−βT∆T) where βT = 2×10−4 K−1) and a shear of about 2 cm s−1over the upper
1 km of ocean. Then, using (2.51), we can estimate a typical eddy velocity scale as

v′ψ ∼
Le

Ld
u ≈ 4u ≈ 8 cm s−1, (2.56)
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Fig. 2.11 Idealized baroclinic lifecyle, similar to that in Fig. 2.8, but with enhanced
stratification of the basic state in the upper domain, representing the oceanic ther-
mocline.

implying, as we noted earlier, an EKE that is an order of magnitude larger than the
mean kinetic energy. Associated with this are typical temperature perturbations whose
magnitude we can estimate using (2.48) or (2.49) as being about 2 K. These estimates
are comparable to those observed in mid ocean, with more energetic eddies forming near
intense western boundary currents where gradients are large and barotropic instability
also provides a source of energy for the eddies. There is least a factor of a few uncertainty,
but it is noteworthy that they are roughly comparable to the values observed.

Lifecycles

The lifecyle of a mid-oceanic baroclinic eddy will differ from its atmospheric counterpart
in two main respects:

(i) Baroclinic eddies may be advected by the mean flow into regions with quite different
properties from where they initially formed.

(ii) The nonuniformity of the stratification affects the passage to barotropic flow.
Both of these can properly only be studied by numerical means. Regarding the first,
eddies will often form in or near intense western boundary currents, but then will be
advected by that current into the potentially less unstable open ocean before completing
their lifecyle. Regarding the second, an oceanic analog of the lifecyle illustrated in Fig.
2.8 is shown in Fig. 2.11.



CHAPTER

THREE

Eddies and the General Circulation

In this chapter we look at how eddies affect the general circulation of the atmosphere.
The first two sections — on the Eliassen-Palm flux and the Transformed Eulerian Mean
— are a little technical. In the lectures we may start with section 3.3 and refer back to
these sections as needed. (On the other hand. . . )

3.1 * THE ELIASSEN-PALM FLUX

The eddy flux of potential may be expressed in terms of vorticity and buoyancy fluxes as

v′q′ = v′ζ′ + f0v′
∂
∂z

(
b′

N2

)
(3.1)

The second term on the right-hand side can be written

f0v′
∂
∂z

(
b′

N2

)
= f0

∂
∂z

(
v′b′

N2

)
− f0

∂v′

∂z
b′

N2

= f0
∂
∂z

(
v′b′

N2

)
− f0

∂
∂x

(
∂ψ′

∂z

)
b′

N2

= f0
∂
∂z

(
v′b′

N2

)
− f

2
0

N2
∂
∂x

(
1
2
∂ψ′

∂z

)2 (3.2)

using b′ = f0∂ψ′/∂z.
Similarly, the flux of relative vorticity can be written

v′ζ′ = − ∂
∂y
u′v′ + 1

2
∂
∂x
(v′2 −u′2) (3.3)

53
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Using (3.2) and (3.3), (3.1) becomes

v′q′ = − ∂
∂y
(u′v′)+ ∂

∂z

(
f0

N2v
′b′
)
+ ∂
∂x

(
1
2
(v′2 −u′2)− b

′2

N2

)
(3.4)

Thus the potential vorticity flux, in the quasi-geostrophic approximation, can be written
as the divergence of a vector: v′q′ = ∇ ·E where

E ≡
(

1
2
(v′2 −u′2)− b

′2

N2

)
i− (u′v′) j+

(
f0

N2v
′b′
)

k. (3.5)

A particularly useful form of this arises after zonally averaging, after which (3.4) be-
comes

v′q′ = − ∂
∂y
u′v′ + ∂

∂z

(
f0

N2v
′b′
)
. (3.6)

The vector defined by

F ≡ −u′v′ j+ f0

N2v
′b′ k (3.7)

is called the Eliassen-Palm flux,1 and its divergence, given by (3.30), gives the polewards
flux of potential vorticity:

v′q′ = ∇x ·F, (3.8)

where ∇x· ≡ (∂/∂y , ∂/∂z) is the divergence in the meridional plane. Unless the mean-
ing is unclear, the subscript x on the meridional divergence will be dropped.

3.1.1 The Eliassen-Palm relation

On dividing by ∂q/∂y and using (3.8), the enstrophy equation (??) becomes

∂A
∂t

+∇ ·F = D , (3.9a)

where

A= q′2

2∂q/∂y
, D = D′q′

∂q/∂y
(3.9b)

Eq. (3.9a) is known as the Eliassen-Palm relation, and it is a conservation law for the
the wave activity density A, for if we integrate this expression over a meridional area A
bounded by walls where the eddy activity vanishes, and if D = 0, we obtain

d
dt

∫
A
AdA = 0. (3.10)

In general, a wave activity is a quantity that is quadratic in the amplitude of the pertur-
bation and that is conserved in the absence of forcing and dissipation. More specifically,
A is the negative of the pseudomomentum, for reasons we will encounter later. Note
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that neither perturbation energy nor perturbation enstrophy are wave activities of the
linearized equations, because there can be an exchange of energy or enstrophy between
mean and perturbation — indeed, this is how a perturbation grows in baroclinic or
barotropic instability! This is already evident from (??), or in general take (??) with
D′ = 0 and multiply by q′ to give the enstrophy equation

1
2
∂q′2

∂t
+ 1

2
u · ∇q′2 + u′q′ · ∇q = 0 (3.11)

where here the overbar is an average (although it need not be a zonal average). Inte-
grating this over a volume V gives

dẐ′

dt
≡ d

dt

∫
V

1
2
q′2 dV = −

∫
V
u′q′ · ∇q dV. (3.12)

The right-hand side does not in general vanish and so Ẑ′ is not in general conserved.
The ave activity A is thus both a measure of the amplitude of a wave and a conserved
quantity, in the sense of (3.9a).

3.1.2 The group velocity property

The vector F describes how the wave activity propagates. In general, we cannot express
it simply in terms of A, but in the case in which the disturbance is composed of plane
or almost plane waves that satisfy a dispersion relation, then F = cgA, where cg is the
group velocity and (3.9a) becomes

∂A
∂t

+∇ · (Acg) = 0. (3.13)

We shall demonstrate this when the waves in question are plane Rossby waves.

Group velocity property for Rossby waves

The Boussinesq quasi-geostrophic equation on the β-plane, linearized around a uniform
zonal flow and with constant static stability, is

∂q′

∂t
+u∂q

′

∂x
+ v′ ∂q

∂y
= 0 (3.14)

where q′ = [∇2 + (f 2
0 /N2)∂2/∂z2]ψ′ and, if u is constant, ∂q/∂y = β. Thus we have(
∂
∂t
+u ∂

∂x

)[
∇2ψ′ + ∂

∂z

( f 2
0

N2
∂ψ′

∂z

)]
+ β∂ψ

′

∂x
= 0. (3.15)

Seeking solutions of the form

ψ′ = Re ψ̃ ei(kx+ly+mz−ωt), (3.16)

we find the dispersion relation,

ω = uk− βk
κ2 . (3.17)
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with group velocities,

cyg =
2βkl
κ2 , czg =

2βkmf 2
0 /N2

κ2 , (3.18)

where κ2 = (k2 + l2 +m2f 2
0 /N2). Also, if u′ = Re ũ exp[i(kx + ly +mz −ωt)], and

similarly for the other fields, then

ũ = −Re ikψ̃, ṽ = Re ilψ̃,

b̃ = Re imf0ψ̃, q̃ = −Reκ2ψ̃.
(3.19)

The wave activity is then

A= 1
2
q′2

β
= κ

4

4β
|ψ̃2| (3.20)

where the additional factor of 2 in the denominator arises from the averaging. Using
(3.19) the EP flux, (3.7), is

Fy = −u′v′ = 1
2
kl|ψ̃2|

Fz = f0

N2v
′b′ = f 2

0

2N2km|ψ̃
2|.

(3.21)

Using this (3.18) and (3.20) gives

F = (Fy ,Fz) = cgA . (3.22)

If the properties of the medium are varying, but only on scales larger than the scale of the
waves and we can still define a group velocity, then this is a useful expression to estimate
how the wave activity propagates in the atmosphere and in numerical simulations.

3.2 * THE TRANSFORMED EULERIAN MEAN

3.2.1 Quasi-geostrophic form

For simplicity we will use the Boussinesq equations on the beta-plane, and the zonally-
averaged Eulerian mean equations for the zonally-averaged zonal velocity and the buoy-
ancy may then be written, approximately

∂u
∂t

= f0v −
∂
∂y
u′v′ + F, (3.23a)

∂b
∂t

= −N2w − ∂
∂y
v′b′ + J, (3.23b)

where b is in thermal wind balance with u (f0∂u/∂z = −∂b/∂y ). One less-than-ideal
aspect of these equations is that in the extratropics the dominant balance is usually
between the first two terms on the right-hand sides of each equation, even in time-
dependent cases. Thus, the Coriolis force closely balances the divergence of the eddy



3.2 * The Transformed Eulerian Mean 57

momentum fluxes, and the advection of the mean stratification (N2w, or ‘adiabatic cool-
ing’) often balances the convergence of eddy heat flux, with heating being a small resid-
ual. This may lead to an underestimation of the importance of diabatic heating, for this
is ultimately responsible for the mean meridional circulation. Thus, in the thermody-
namic equation we might seek to combine the terms N2w and the eddy flux into a single
total (or ‘residual’) heat transport term that in a steady state is balanced by the diabatic
term J. The TEM provides this reformulation, and in doing so the eddy terms in the
momentum equation also take a different form.

To begin, note that because v andw are related by mass conservation, we can define
a mean meridional streamfunction ψm such that

(v,w) =
(
−∂ψm
∂z

,
∂ψm
∂y

)
. (3.24)

Given this, the velocities satisfy ∂v/∂y + ∂w/∂z = 0. Then, if we define a ‘residual’
streamfunction by

ψ∗ ≡ ψm +
1
N2v

′b′ (3.25)

the components of the residual mean meridional circulation are given by

(v∗,w∗) =
(
−∂ψ

∗

∂z
,
∂ψ∗

∂y

)
, (3.26)

and
v∗ = v − ∂

∂z

(
1
N2v

′b′
)
, w∗ = w + ∂

∂y

(
1
N2v

′b′
)
. (3.27)

Note that by construction, the residual overturning circulation satisfies

∂v∗

∂y
+ ∂w

∗

∂z
= 0. (3.28)

Substituting (3.27) into (3.23a) and (3.23b) the zonal momentum and buoyancy equa-
tions then take the simple forms

∂u
∂t

= f0v∗ + v′q′ + F

∂b
∂t

= −N2w∗ + J
, (3.29)

where
v′q′ = v′ζ′ + ∂

∂z

(
f0

N2v
′b′
)
= − ∂

∂y
u′v′ + ∂

∂z

(
f0

N2v
′b′
)
. (3.30)

These are known as the (quasi-geostrophic) transformed Eulerian mean equations.
If we know the potential vorticity flux as well as F and J, then (3.28) and (3.29),

along with thermal wind balance

f0
∂u
∂z

= − ∂b
∂y

(3.31)
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Aspects of the TEM formulation

Properties and features

? The residual mean circulation is equivalent to the total mass-weighted
(eddy plus Eulerian mean) circulation, and it is this circulation that is
driven by the diabatic forcing.

? There are no explicit eddy fluxes in the buoyancy budget; the only
eddy term is the flux of potential vorticity, and this is divergence of the
Eliassen-Palm flux; that is v′q′ = ∇x · E.

? The residual circulation, v∗, becomes part of the solution, just as v is
part of the solution in an Eulerian mean formulation.

But note

? The theory and practice are well developed for a zonal average, less so for
three-dimensional, non-zonal flow. This is because the geometry enforces
simple boundary conditions in the zonal mean case.

? The boundary conditions on the residual circulation are neither necessar-
ily simple nor easily determined; for example, at a horizontal boundary
w∗ is not zero if there are horizontal buoyancy fluxes.

form a complete set. The meridional overturning circulation is obtained by eliminating
time derivatives from (3.29) using (3.31) to give

f 2
0
∂2ψ∗

∂z2 +N2 ∂2ψ∗

∂y2 = f0
∂
∂z
v′q′ + f0

∂F
∂z

+ ∂J
∂y
. (3.32)

Thus, the residual or net overturning circulation is ‘driven’ by the (vertical derivative of
the) potential vorticity fluxes and the diabatic terms — driven in the sense that if we
know those terms we can calculate the overturning circulation. Note that this equation
applies at every instant, even if the equations are not in a steady state.

3.2.2 The TEM in isentropic coordinates

The residual circulation has an illuminating interpretion if we think of the fluid as com-
prising multiple layers of shallow water, or equivalently if we cast the problem in isen-
tropic coordinates. The momentum and mass conservation equation can then be written
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as

∂u
∂t

+ u · ∇u− fv = F (3.33a)

∂h
∂t

+∇ · (hu) = J (3.33b)

In isentropic coordinates h is the thickness between two isentropic surfaces and H =
H(b) is its mean thickness, and the layer thickness is a measure of the temperature of
the layer. With quasi-geostrophic scaling (so that β and variations in layer thickness are
small) zonally averaging in a conventional way gives

∂u
∂t

− f0v = v′ζ′ + F (3.34a)

∂h
∂t

+H ∂v
∂y

= − ∂
∂y
v′h′ + J[h] (3.34b)

The overbars in these equations denote averages taken along isentropes, but are other-
wise conventional, and the meridional velocity is purely ageostrophic. We now choose
to define the residual circulation by

v∗ = v + 1
H
v′h′ (3.35)

which is analogous to (3.27). Using (3.35) in (3.34) gives

∂u
∂t

− f0v∗ = v′q′ + F (3.36a)

∂h
∂t

+H∂v
∗

∂y
= J[h]. (3.36b)

where
v′q′ = v′ζ′ + f0

H
v′h′ . (3.37)

From (3.35) we see that the residual velocity is a measure of the total meridional mass
flux, eddy plus mean, in an isentropic layer. This is often a more useful quantity than the
Eulerian velocity v because it is generally the former, not the latter, that is constrained by
the external forcing. What we have done, of course, is to effectively use a mass-weighted
mean in (3.33b); that is, if we define the mass-weighted mean by

v∗ ≡
hv
h

(3.38)

so that
v∗ = v +

1
h
v′h′ , (3.39)

then the zonal average of (3.33b) is just

∂h
∂t

+ ∂
∂y
(hv∗) = J[h], (3.40)
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which is the same as (3.36b) if h = H. Similarly, if we use the mass weighted velocity
(3.39) in the momentum equation (3.34a) we obtain (3.36a).

Evidently, if the mass-weighted meridional velocity is used in the momentum and
thickness equations then the eddy mass flux does not enter the equations explicitly —
the only eddy flux in (3.36) is that of potential vorticity. That is, in isentropic coordinates
the equations in TEM form are equivalent to the equations that arise from a particular
form of averaging — mass weighted averaging — rather that the conventional Eulerian
averaging. Does a similar relationship hold in height coordinates? The answer is yes, as
we now see.

3.3 THE MAINTENANCE OF JETS IN THE ATMOSPHERE

3.3.1 Observations and Motivation

The atmosphere above the surface has a generally eastward flow, with a broad maximum
about 10 km above the surface at around 40° in either hemisphere. But if we look a little
more at the zonally average wind in we see hints there being two jets — one (the sub-
tropical jet) at around 30°, and another somewhat polewards of this, especially apparent
in the Southern Hemisphere. Such a jet is particularly noticeable in certain regions of the
globe, when a zonal average is not taken, as in Fig. 3.1. The subtropical jet is associated
with a strong meridional temperature gradient at the edge of the Hadley Cell, and is
quite baroclinic. On the other hand the midlatitude jet (sometimes called the subpolar
jet) is fairly barotropic (it has little vertical structure, with less shear than the subtropical
jet) and lies above an eastward surface flow. This flow feels the effect of friction and so
there must be a momentum convergence into this region, and we see this clearly in Fig.
??. We will find that this momentum convergence occurs largely in transient eddies, and
the jet is known as the eddy-driven jet. Although the eddies themselves are a product of
baroclinic instability, the essential mechanism of jet production is present in barotropic
dynamics, so let us first consider how an eastward jet can be maintained in a turbulent
flow on the surface of a rotating sphere.

In barotropic turbulence, alternating east-west jets can be maintained if β is non-
zero, as described in chapter 2. However, that case was homogeneous, with no preferred
latitude for a particular direction of jet, whereas in the atmosphere there appears to be
but one mid-latitude jet, and although it meanders it certainly has a preferred average
location. In the subsections that follow we give four explanations as to how this is
achieved. The first of these has a different flavour than the others, but they are all just
different perspectives on the same mechanism.2

3.3.2 The mechanism of jet production

I. The vorticity budget

Suppose that the absolute vorticity normal to the surface (i.e., ζ + 2Ω sinϑ) increases
monotonically poleward. (A sufficient condition for this is that the fluid is at rest.) By
Stokes’ theorem, the circulation around a line of latitude circumscribing the polar cap is
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Fig. 3.1 The time-averaged zonal wind at 150° W (in the mid Pacific) in December-
January February (DFJ, left), March-April-May (MAM, right). The contour interval is
5 m s−1. Note the double jet in each hemisphere, one in the subtropics and one in
midlatitudes. The subtropical jets is associated with strong meridional temperature
gradient, whereas the midlatitude jets have a stronger barotropic component and
are associated with westerly winds at the surface.

equal to the integral of the absolute vorticity over the cap. That is,

I1 =
∫

cap
ωia · dA =

∮
C
uia dl =

∮
C
(ui + 2Ωa cosϑ)dl, (3.41)

where ωia and uia are the initial absolute vorticity and velocity, ui is the initial zonal
velocity in the earth’s frame of reference, and the line integrals are around the line of
latitude. For simplicity let us take ui = 0 and suppose there is a disturbance equator-
wards of the polar cap, and that this results in a distortion of the material line around
the latitude circle C (Fig. 3.2). Since we are supposing the source of the disturbance is
distant from the latitude of interest, then if we neglect viscosity the circulation along the
material line is conserved, by Kelvin’s circulation theorem. Thus, vorticity with a lower
value is brought into the region of the polar cap, and (using Stokes theorem again)
the circulation around the latitude circle C must fall. That is, denoting values after the
disturbance with a subscript f ,

If =
∫

cap
ωfa · dA < Ii (3.42)

so that ∮
C
(uf + 2Ωa cosϑ)dl <

∮
C
(ui + 2Ωa cosϑ)dl (3.43)

and
uf < ui (3.44)

with the overbar indicating a zonal average. Thus, there is a tendency to produce west-
ward flow polewards of the disturbance. By a similar argument westward flow is also
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Fig. 3.2 The effects of midlatitude disturbance on the circulation aroud the lat-
itude line C. If initially the absolute vorticity increases monotonically polewards,
then the disturbance will bring fluid with lower absolute vorticity into the cap re-
gion. Then, using Stokes theorem, the velocity around the latitude line C will
become more westward.

produced equatorward of the disturbance — to see this apply Kelvin’s theorem over all
of the globe south of the source of the disturbance (taking care to take the dot-product
correctly between the direction of the vorticity vector and the direction of normal to the
surface). Finally, note that the overall situation is the same in the Southern Hemisphere.
Thus, on the surface of a rotating sphere, external stirring will produce westward flow
away from the region of the stirring.

Now suppose furthermore that the disturbance imparts no net angular momentum to
the fluid. Then the integral of ua cosϑ over the entire hemisphere must be constant. But
the fluid is accelerating westward away from the disturbance. Therefore, the fluid in the
region of the disturbance must accelerate eastward. That, is, angular momentum must
converge into the stirred region, producing an eastward flow. This simple mechanism
is the essence of the production of eastward eddy-driven jets in the atmosphere, and of
the eastward surface winds in mid-latitudes. The stirring that here we have externally
imposed comes, of course, from baroclinic instability.

If the stirring subsides then the flow may reversibly go back to its initial condition,
with a concomitant reversal of the momentum convergence that caused the zonal flow.
Thus, we must have some form of dissipation and irreversibility in order to produce
permanent changes, and in particular we need to irreversibly mix vorticity. (This result
is closely related to the non-acceleration results of chapter ??.) If the fluid is continuously
mixed, then of course we also need a source that restores the absolute vorticity gradient,
else we will completely homogenize the vorticity over the hemisphere, so let us now set
up a simple model that shows how a permanent jet structure can be maintained.

II. The pseudomomentum budget



3.3 The Maintenance of Jets in the Atmosphere 63

The kinematic relation between vorticity flux and momentum flux for non-divergent
two-dimensional flow is

vζ = 1
2
∂
∂x

(
v2 −u2)

)
− ∂
∂y
(uv). (3.45)

After zonal averaging this gives

v′ζ′ = −∂u
′v′

∂y
, (3.46)

noting that v = 0. For reference, in spherical coordinates this expression becomes

v′ζ′ cosϑ = − 1
a cosϑ

∂
∂ϑ
(cos2 ϑu′v′). (3.47)

If (3.46) [or (3.47)] is integrated with respect to y between two quiescent latitudes
then the right-hand side vanishes. That is the zonally-averaged meridional vorticity flux
vanishes when integrated over latitude.

Now, the barotropic zonal momentum equation is (for horizontally non-divergent
flow)

∂u
∂t

+ ∂u
2

∂x
+ ∂uv
∂y

− fv = −∂φ
∂x

+ Fu −Du, (3.48)

where Fu and Du represent the effects of any forcing and dissipation. Zonal averaging,
with v = 0, gives

∂u
∂t

= −∂uv
∂y

+ Fu −Du, (3.49)

or, using (3.46),
∂u
∂t

= v′ζ′ + Fu −Du. (3.50)

Thus, the zonally averaged wind is maintained by the zonally averaged vorticity flux.
On average there is little if any direct forcing of horizontal momentum and we may set
Fu = 0. Also, most of the dissipation comes from the bottom Ekman layer and if this is
parameterized by a linear drag (3.50) becomes

∂u
∂t

= v′ζ′ − ru, (3.51)

where the constant r is an inverse frictional timescale.
Now consider the maintainance of this vorticity flux. The barotropic vorticity equa-

tion is
∂ζ
∂t

+ u · ∇ζ + vβ = Fζ −Dζ . (3.52)

where Fζ and Dζ are forcing and dissipation of vorticity. Linearize about a mean zonal
flow to give

∂ζ′

∂t
+u∂ζ

′

∂x
+ γv′ = F ′ζ −D′ζ , (3.53)
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where

γ = β− ∂
2u
∂y2 (3.54)

is the meridional gradient of absolute vorticity. Multiply (3.53) by ζ′/γ and zonally
average to form the pseudomomentum equation,

∂P
∂t

+ v′ζ′ = 1
γ
(ζ′F ′ζ − ζ′D′ζ ), (3.55)

where
P = 1

2γ
ζ′2 (3.56)

is the negative of the pseudomomentum for this problem (see also (3.9b) on page 54, and
section 3.1 more generally). The parameter γ is positive if the average absolute vorticity
increases monotonically northwards, and this is usually the case in both Northern and
Southern hemispheres.

In the absence of forcing and dissipation, (3.51) and (3.55) imply an important
relationship between the change of the mean flow and the pseudomomentum, namely

∂u
∂t

+ ∂P
∂t

= 0. (3.57)

Now, P is a measure of the wave activity; if for some reason this increases, perhaps
because a wave enters an initially quiescent region because of stirring elsewhere, then
P increases and the mean flow must decrease. However, because the vorticity flux in-
tegrates to zero, the zonal flow cannot decrease everywhere. Thus, if the zonal flow
decreases in regions away from the stirring, it must increase in the region of the stirring.
In the presence of forcing and dissipation this mechanism can lead to the production of
a statistically steady jet in the region of the forcing, for (3.51) and (3.55) combine to
give

∂u
∂t

+ ∂P
∂t

= −ru+ 1
γ
(ζ′F ′ζ − ζ′D′ζ ), (3.58)

and in a statistically steady state

ru = 1
γ
(ζ′F ′ζ − ζ′D′ζ ) . (3.59)

The terms on the right-hand side simply represent the stirring and dissipation of vorticity,
and integrated over latitude their sum will vanish, or otherwise the pseudomomentum
budget cannot be in a steady state. However, let us suppose that forcing is confined
to midlatitudes. In that region, the first term on the right-hand side of (3.59) will be
larger than the second, and eastward mean flow will be generated. Away from the
direct influence of the forcing, the dissipation term will dominate and westward mean
flows will be generated, as sketched in Fig. 3.3 On a β-plane or on the surface of a
rotating sphere an eastward mean zonal flow can be maintained by a vorticity stirring
that imparts no net momentum to the fluid. More generally, stirring in the presence
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Figure 3.3 Pseudomomentum stirring,
which in reality occurs via baroclinic in-
stability, is confined to midlatitudes. Be-
cause of Rossyby wave propagation away
from the source region, the distribution of
pseudomomentum dissipation is broader,
and the sum of the two leads to the
zonal wind distribution shown, with posi-
tive (eastward) values in the region of the
stirring. See also Fig. 3.8.

of vorticity gradient gives rise to a mean flow, and on a spherical planet that vorticity
gradient is provided by rotation.

In above arguments, the vorticity equation (3.52) was linearized about a mean flow
whereas the zonal momentum equation (3.50) was not. Is this consistent? If the eddy
amplitude is small, then linearization is certainly appropriate in the vorticity equation.
However, even in this case we cannot linearize the zonally averaged zonal momentum
equation because there is nothing to linearize it about: there is no large term associated
with the mean flow that dominates the other terms if the eddy amplitude is small. The
reader may also object that we have not proven that the forcing and dissipation terms
will not locally balance in the region of the forcing, producing no net winds. That can
only occur if the dissipation is confined to the region of the forcing, but this is highly
unlikely because Rossby waves are generated in the forcing region, and these propagate
meridionally before dissipating, as we now discuss.

III. Rossby waves and momentum flux

We have seen that the presence of a mean gradient of vorticity is an essential ingredient
in the mechanism whereby a mean flow is generated by stirring. Given such, we expect
Rossby waves to be excited, and we now show how Rossby waves are intimately related
to the momentum flux maintaining the mean flow.

If a stirring is present in midlatitudes then we expect that Rossby waves will be
generated there. To the extent that the waves are quasi-linear and do not interact then
away from the immediate source region each wave has the form

ψ = ReC ei(kx+ly−ωt) = ReC ei(kx+ly−kct), (3.60)

where C is a constant, with dispersion relation

ω = ck = uk− βk
k2 + l2 ≡ωR, (3.61)

provided that there is no meridional shear in the zonal flow. The meridional component
of the group velocity is given by

cyg =
∂ω
∂l

= 2βkl
(k2 + l2)2 . (3.62)
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Fig. 3.4 Generation of zonal flow on a β-plane or on a rotating sphere. Stirring
in midlatitudes (by baroclinic eddies) generates Rossby waves that propagate away
from the disturbance. Momentum converges in the region of stirring, producing
eastward flow there and weaker westward flow on its flanks.

Now, the direction of the group velocity must be away from the source region; this is a
radiation condition (discussed more in the next subsection), demanded by the require-
ment that Rossby waves transport energy away from the disturbance. Thus, northwards
of the source kl is positive and southwards of the source kl is negative. That the product
kl can be positive or negative arises because for each k there are two possible values of
l that satisfy the dispersion relation (3.61), namely

l = ±
(
β

u− c − k
2
)1/2

, (3.63)

assuming that the quantity in brackets is positive.
The velocity variations associated with the Rossby waves are

u′ = −ReCil ei(kx+ly−ωt), v′ = ReCik ei(kx+ly−ωt), (3.64a,b)

and the associated momentum flux is

u′v′ = −1
2
C2kl. (3.65)

Thus, given that the sign of kl is determined by the group velocity, northwards of the
source the momentum flux associated with the Rossby waves is southward (i.e., u′v′ is
negative), and southwards of the source the momentum flux is northwards (i.e., u′v′

is positive). That is, the momentum flux associated with the Rossby waves is toward
the source region. Momentum converges in the region of the stirring, producing net
eastward flow there and westward flow to either side.

Another way of seeing this is to note that if kl is positive then lines of constant
phase (kx + ly = constant) are tilted north-west/south-east, and the momentum flux
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Figure 3.5 The momentum transport in
physical space, caused by the propagation of
Rossby waves away from a source in midlati-
tudes. The ensuing bow-shaped eddies are re-
sponsible for a convergence of momentum, as
indicated in the idealization pictured.

associated with such a disturbance is negative (u′v′ < 0). Similarly, if kl is negative then
the constant-phase lines are tilted north-east/south-west and the associated momentum
flux is positive (u′v′ > 0). The net result is a convergence of momentum flux into the
source region. In physical space this is reflected by having eddies that are ‘bow-shaped’,
as in Fig. 3.5.

* The radiation condition and Rayleigh friction

Why is the group velocity directed away from the source region? It is because the energy
flux travels at the group velocity, and the energy flux must be directed away from source
region; the reader comfortable with that result may stop here. Another way to deter-
mine the direction of the group velocity is to employ a common trick in fluid dynamics,
especially in problems of wave propagation, that of adding a small amount of friction to
the inviscid problem.3 The solution of the ensuing problem in the limit of small friction
will often make clear which solution is physically meaningful in the inviscid problem,
and therefore which solution nature chooses. Consider the linear barotropic vorticity
equation with linear friction,

∂ζ
∂t

+ β∂ψ
∂x

= −rζ (3.66)

where r is a small friction coefficient. The dispersion relation is

ω = −βk
K2 − ir =ωR(k, l)− ir , (3.67)

where ωR is defined by (3.61), and the wave decays with time. Now suppose a wave is
generated in some region, and that it propagates meridionally away, decaying as moves
away. Then, instead of an imaginary frequency, we may suppose that the frequency
is real and the y-wavenumber is imaginary. Specifically, we take l = l0 + l′ where
l0 = ±[β/(u−c)−k2]1/2 for some zonal wavenumber k, as in (3.63), andω =ωR(k, l0).
For small friction, we obtain l′ by Taylor-expanding the dispersion relation around its
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inviscid value, ωR(k, l0), giving

ω+ ir =ωR(k, l) ≈ωR(k, l0)+
∂ωR(k, l0)

∂l
l′, (3.68)

and therefore
l′ = ir

cyg
(3.69)

where cyg = ∂lωR(k, l0) is the y-component of the group velocity. The wavenumber is
imaginary, so that the wave either grows or decays in the y-direction. The wave solution
then obeys

ψ ≈ C exp[i(kx −ωRt)] exp(il0y − ry/cyg ). (3.70)

We now demand that the solution decay away from the source, because any other choice
is manifestly unphysical, even as we let r be as small as we please. Thus, with the
source at y = 0, cyg must be positive for positive y and negative for negative y. In other
words, the group velocity must be directed away from the source region, and therefore
momentum flux converges on the source region.

IV. The Eliassen-Palm flux

The Eliassen-Palm (EP) flux provides a useful framework for determining how waves
affect the mean flow, and the barotropic case is a particularly simple and instructive ex-
ample. The zonally averaged momentum equation may be written, for either a stratified
or barotropic model, as

∂u
∂t

− f0v∗ = ∇x ·F − ru (3.71)

where v∗ is the residual meridional velocity and F is the Eliassen-Palm (EP) flux, and
∇x· is the divergence in the meridional plane. In the barotropic case v∗ = 0 and

F = −ju′v′ . (3.72)

Now, if the momentum flux is primarily the result of interacting nearly-plane Rossby
waves, then the EP flux obeys the group velocity property (chapter ??), namely that the
flux of wave activity is equal to the group velocity times the wave activity density. Thus,

Fy ≡ j ·F ≈ cygA (3.73)

where A is the wave activity density, or pseudomomentum,

A= ζ
′2

qy
= ζ

′2

γ
≈ ζ

′2

β
, (3.74)

and, if γ > 0, A is a positive definite quantity. Now, the group velocity is directed away
from the region of disturbance, and furthermore if the vorticity gradient is everywhere
positive then the EP flux takes the sign of the group velocity (3.62). Thus, as sketched
in Fig. 3.5 and Fig. 3.6, momentum converges in the region of the disturbance and an
eastward jet is generated. This argument is largely equivalent to that of the previous
subsection, and the result of (3.65) can be regarded as illustrating the group velocity
property of the EP flux for batoropic Rossby waves in an argument from first principles.
[Using (3.62), (3.73) and (3.74) we can explicitly recover (3.65).]
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Fig. 3.6 If a region of fluid on the β-plane or on a rotating sphere is stirred,
then Rossby waves will propagate westwards and away from the disturbance, and
this is the direction of propagation of wave activity density. Thus, there is positive
divergence of wave activity in the stirred region, and using (3.73) and (3.71) this
produces a westward acceleration.

3.3.3 A numerical example

We conclude from above arguments that momentum will converge into a rapidly rotating
flow that is stirred in a meridionally localized region. To illustrate this, we numerically
integrate the barotropic vorticity equation on the sphere, with a meridionally localized
stirring term; explicitly, the equation that is integrated is

∂ζ
∂t

+ J(ψ,ζ)+ β∂ψ
∂x

= −rζ + κ∇4ζ + Fζ . (3.75)

The first term on the right-hand side is a linear drag, parameterizing momentum loss in
an Ekman layer. The second term removes enstrophy that has cascaded to small scales; it
has a negligible impact at large scales. The forcing term Fζ is a ‘wavemaker’ confined to
a zonal strip of about 15° meridional extent, centered at about 45° N, that is statistically
zonally uniform and that spatially integrates to zero. Within that region it is a random
stirring with a temporal decorrelation scale of a few days and a spatial decorrelation
scale corresponding to about wavenumber 8, so mimicking weather scales. Thus, it
provides no net source of vorticity or momentum, but it is a source of pseudomomentum
because Fζ > 0.

The results of a numerical integration of (3.75) are illustrated in Fig. 3.7 and Fig.
3.8. An eastward jet forms in the vicinity of the forcing, with westward flow on either
side. The pseudomomentum stirring and dissipation that produces this flow is shown in
Fig. 3.8. As expected, the dissipation has a broader distribution than the forcing, and
their sum (the dot-dashed line in the figure) has the same meridional distribution as the
zonal flow itself.
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Fig. 3.7 The time- and zonally-averaged wind (solid line) obtained by an integra-
tion of the barotropic vorticity equation (3.75) on the sphere. The fluid is stirred
in midlatitudes by a random wavemaker that is statistically zonally uniform, acting
around zonal wavenumber 8, and that supplies no net momentum. Momentum
converges in the stirring region leading to an eastward jet with a westward flow to
either side, and zero area-weighted spatially integrated velocity. The dashed line
shows the r.m.s. (eddy) velocity created by the stirring.
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Fig. 3.8 The pseudomentum stirring (solid line, F ′ζζ′), dissipation (dashed line,

D′ζζ′) and their sum (dot-dashed), for the same integration as Fig. 3.7. Because
Rossby waves propagate away from the stirred region before breaking, the distri-
bution of dissipation is broader than the forcing, resulting in an eastward jet where
the stirring is centered, with westward flow on either side.
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Figure 3.9 An atmosphere with two ho-
mogeneous (or isentropic) layers of mean
thickness H1 and H2, local thickness h1

and h2, and interface η, contained between
two flat, rigid surfaces.

3.4 THE FERREL CELL

We now construct a two-layer model of the mid-latitude tropospheric general circulation.
We assume that quasi-geostrophic scaling holds, and that the two fluid layers are held

between two flat rigid lids.

3.4.1 Equations of motion

The equations of motion are those of a two-layer Boussinesq shallow water model con-
fined between two rigid flat surfaces, and readers who are comfortable with these dy-
namics may quickly skip through this section, merely glancing at the boxed equations as
they pass. The momentum equations of each layer are

Du1

Dt
+ f × u1 = −∇φ1 (3.76a)

Du2

Dt
+ f × u2 = −∇φ2 − ru2. (3.76b)

where φ1 = pT/ρ0 and φ2 = pT/ρ − g′∇η, where pT is the pressure at the lid at the
top, η is the interface displacement (see Fig. 3.9) and g′ = g(ρ1 − ρ2)/ρ0 is the reduced
gravity. We have also included a simple representation of surface drag, −ru2, in the
lowest layer, and r is a constant. We will use a constant value of the Coriolis parameter
except where it is differentiated, and on zonal averaging (3.76) become

∂u1

∂t
− f0v1 = v′1ζ′1 (3.77a)

∂u2

∂t
− f0v2 = v′2ζ′2 − ru2, (3.77b)

Geostrophic balance in each layer implies

f0ug1 = k×∇φT , f0ug2 = k×∇φT − g′k×∇η, (3.78a,b)

where the subscript g denotes geostrophic. Subtracting one equation from the other
gives

f0(u1 − u2) = g′k×∇η , (3.79)
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now dropping the subscript g. This is thermal wind balance for this system. A tem-
perature gradient thus corresponds to a slope of the interface height, with the interface
sloping upwards toward lower temperatures, analogous to isentropes sloping up toward
the pole in the real atmosphere.

The quasi-geostrophic potential vorticity for each layer is

qi = ζi + f − f0
hi
Hi

(3.80)

where Hi is the reference thickness of each layer, which we take to be its mean thickness.
The potential vorticity flux in each layer is then

v′iq
′
i = v′iζ′i −

f0

Hi
v′ih

′
i . (3.81)

Using this in (3.77) gives

∂u1

∂t
= v′1q′1 + f0v∗1

∂u2

∂t
= v′2q′2 + f0v∗2 − ru2

. (3.82)

where

v∗i = v +
v′ih

′
i

Hi
(3.83)

is the meridional component of the residual velocity in each layer, proportional to the
total meridional mass flux in each layer. These are the transformed Eulerian mean (TEM)
forms of the equations, first encountered in section 3.2.

In the barotropic model of section 3.3 the mean meridional velocity vanished at
every latitude, a consequence of mass conservation in a single layer between two rigid
flat surfaces. In a single-layer model of section ?? the mean meridional velocity was in
general non zero, but the total meridional mass flux (i.e., the meridional component of
the residual velocity) was zero if the domain is bounded laterally by solid walls. In the
two layer model we will allow a transformation of mass from one layer to another, which
is the equivalent of heating: a conversion of mass from the lower layer to the upper layer
is heating, and conversely for cooling. Thus, heating at low latitudes and cooling at high
latitudes leads to the interface sloping upward toward the pole. In the two-layer model
the constraint that mass conservation supplies is that, assuming a statistically steady
state, the total polewards mass flux summed over both layers must vanish.

The mass conservation equation for each layer is

∂hi
∂t

+∇ · (hiui) = Si, (3.84)

where Si is the mass source term and we may suppose that S1 + S2 = 0 everywhere. A
zonal average gives

∂hi
∂t

+ ∂hivi
∂y

= Si (3.85)
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Fig. 3.10 Sketch of the zonally-averaged thermodynamics of a two-layer model.
Cooling at high latitudes and heating at low leads steepens the interface upward
toward the pole (thicker arrows). Associated with this there is a net mass flux —
the residual flow, or the meridional overturning circulation (lighter arrows). In the
tropics this circulation is accounted for by the Hadley Cell, and is nearly all in the
mean flow. In midlatitudes the circulation — the residual flow — is largely due to
baroclinic eddies, and the smaller Eulerian mean flow is actually in the opposite
sense.

or, setting hi = Hi and using (3.83),

∂hi
∂t

+Hi
∂v∗i
∂y

= Si . (3.86)

The mass source term in these equations is equivalent to heating, and let us suppose that
this is such as to provide heating at low latitudes and cooling in high. This is equivalent
to a conversion upper layer mass to lower layer mass at high latitudes, and conversely
at low latitudes, and this can only be balanced by a poleward mass flux in the upper
layer and an equatorward mass flux in the lower layer (Fig. 3.10). That is to say, an
earthlike radiative forcing between equator and pole implies that the total mass flux in
the upper layer will be poleward. This is the opposite of the mean meridional circulation
of the Ferrel cell shown in Fig. ??! What’s going on? Before we can answer that, let us
manipulate the equations of motion and obtain a couple of useful preliminary results.

Manipulating the equations

Because the total depth of the fluid is fixed, the mass conservation equations in each
layer (3.85) may each be written as an equation for the interface displacement, namely

∂η
∂t
+∇ · (ηu1) = S1, or

∂η
∂t
+∇ · (ηu2) = −S2 (3.87)

Because of the thermal wind equation (3.79) these equations are identical: u1 · ∇η =
u2 ·∇η and S1 = −S2. (If S1 ≠ −S2 the flow would not remain balanced and the thermal
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wind equation could not be satisfied.) The zonally-averaged interface equation may be
written as

∂η
∂t

−H1
∂v∗1
∂y

= S, or
∂η
∂t

+H2
∂v∗2
∂y

= S (3.88)

where S = −S1 = +S2, consistent with the mass conservation statement

H1v∗1 +H2v∗2 = 0, (3.89)

which states that the vertically integrated total mass flux vanishes at each latitude.
Now, whereas (3.89) is a kinematic statement about the total mass flux, the dynam-

ics provides a constraint on the eddy mass flux in each layer. Using the thermal wind
relationship we have

(v′1 − v′2)η′ = g′
∂η′

∂x
η′ = 0 (3.90)

Hence, if the upper and lower surfaces are both flat, we have that

v′1h
′
1 = −v′2h′2 (3.91)

and the eddy meridional mass fluxes in each layer are equal and opposite. If the bound-
ing surfaces are not flat, we have

v′1η
′
T − v′1h′1 = v′1η′B + v2h′2 (3.92)

instead, where ηT and ηB are the topographies at top and bottom. Eqs. (3.91) and (3.92)
are dynamical results, and not just kinematic ones; they are equivalent to noting that the
form drag on one layer due to the interface displacement is equal and opposite to that
on the other, namely

v′1η′ = −[−v′2η′], (3.93)

where the minus sign inside the square brackets arises because the interface displace-
ment is into layer one but out of layer two.

Using (3.81) (3.92) the eddy potential vorticity fluxes in the two layers are related
by

H1v′1q
′
1 +H2v′2q

′
2 = H1v′1ζ

′
1 +H2v′2ζ

′
2 − f0v′1η

′
T + f0v′1η

′
B , (3.94)

which is the layered version of the continuous result [eq. (3.30) on page 57]∫ T
B
v′q′ dz =

∫ T
B
v′ζ′ dz + f0

N2

[
v′b′

]T
B . (3.95)

For flat upper and lower surfaces, and using viζi = −∂uivi/∂y , (3.94) becomes

H1v′1q
′
1 +H2v′2q

′
2 = H1

∂
∂y
u′1v

′
1 +H2

∂
∂y
u′2v

′
2 , (3.96)

and integrating with respect to y between quiescent latitudes gives

∫ [
H1v′1q

′
1 +H2v′2q

′
2

]
dy = 0 . (3.97)
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That is, the total meridional flux of potential vorticity must vanish. This is a consequence
of the fact that the potential vorticity flux is the divergence of a vector field; in the
continuous case

v′q′ = ∂u
′v′

∂y
− f0

∂
∂z
v′b′

N2 , (3.98)

which similarly vanishes when integrated over a volume if there are no boundary contri-
butions.

3.4.2 Dynamics of the model

We now consider the climate, or the time-averaged statistics, of our two-layer model.
The equations of motion are (3.77) or (3.82), and (3.85) or (3.86). These equations
are not closed because of the presence of eddy fluxes, and in this section we make some
phenomenological and rather general arguments about how these behave in order to get
a sense of the general circulation. In the next section we use a specific closure to address
the same problem.

Let us summarize the physical situation. The two layers of our model are confined
in the vertical between two flat, rigid surfaces, and they are meridionally confined be-
tween slippery walls at high and low latitudes (the ‘pole’ and ‘equator’). The circulation
is driven thermodynamically by a heating at low latitudes and cooling at high, which
translates to a conversion of layer 1 fluid to layer 2 fluid at high latitudes, and the con-
verse at low latitudes (see Fig. 3.10). This sets up an interface that slopes upwards
toward the pole and, by thermal wind, a shear. This situation is baroclinically unstable,
and this sets up a field of eddies, most vigorous in mid-latitudes where the temperature
gradient (or interface slope) is largest. Three fields encapsulate the dynamics — the
surface wind field, the meridional circulation, and the meridional temperature gradient,
and our goal is to understand their qualitative structure. We note from the outset that
the residual circulation is polewards in the upper layer, equatorwards in the lower layer,
and that this is a thermodynamic result, a consequence of heating at low latitudes and
cooling at high latitudes.

From (3.82), the steady state surface wind is given by

rH2u2 = H1v′1q
′
1 +H2v′2q

′
2 = H1v′1ζ

′
1 +H2v′2ζ

′
2 (3.99)

where the second equality uses (3.96). That is, the surface wind is determined by the
vertical integral of either the vorticity flux or the potential vorticity flux.

Neglecting contributions due to the mean horizontal shear (which are small if the
β-Rossby number U/βL2 is small) the potential vorticity gradient in each layer is given
by

∂q1

∂y
= β− f0

H1

∂h1

∂y
� 0 (3.100a)

and
∂q2

∂y
= β− f0

H2

∂h2

∂y
Ü 0. (3.100b)
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In upper layer ∂h1/∂y is negative so that the total potential vorticity gradient is positive
and larger than β itself. In the lower layer ∂h2/∂y is positive and indeed if there is to be
baroclinic instability it must be as large as β in order that ∂q/∂y change sign somewhere.
Thus, although negative the potential vorticity gradient is much weaker in the lower
layer. Thus, Rossby waves (meaning waves that exist because of a background gradient
in potential vorticity) will propagate further in the upper layer, and this asymmetry is
the key to the production of surface winds.

Now, the potential vorticity flux must be negative (and downgradient) in the upper
layer, and there are various ways to see this. One is from the upper layer momentum
equation (3.82a) which in a steady state gives

v′1q
′
1 = −f0v∗1 . (3.101)

Because v∗1 is polewards f0v∗1 is positive and the potential vorticity flux is negative in
both Northern and Southern Hemispheres. Equivalently, in the upper layer the radiative
forcing is increasing the potential vorticity gradient between equator and pole, so there
must be an equatorward potential vorticity flux to compensate. Finally, the perturba-
tion enstrophy or pseudomomentum equations tell us that in a steady state the potential
vorticity flux is downgradient (also see section ??). This is not an independent argu-
ment, since it merely says that the enstrophy budget may be balanced through a balance
between production proportional to the potential vorticity gradient and the dissipation.
For similar reasons we expect the potential vorticity flux to be positive (poleward) in the
lower layer.

Now, (3.97) tells us that latitudinally integrated potential vorticity flux is equal and
opposite in the two layers. If the potential vorticity flux in the lower layer were every-
where equal and opposite to that in the upper layer then using (3.99) there would be no
surface wind, in contrast to the observations. In fact, the potential vorticity flux is more
uniformly distributed in the upper layer, and this gives rise to the surface wind observed.
Let us give a couple of perspectives (on the same argument) as to why this should be so.
The argument centers around the fact that the potential vorticity gradient is stronger in
the upper layer, as we can see from (3.100).

I. Rossby waves and the vorticity flux
The stronger potential vorticity gradient of the upper layer is better able to support
linear Rossby waves than the lower layer. Thus, the vorticity flux in the region of
Rossby-wave genesis in midlatitudes will be large and positive in the upper layer,
and small and negative in the lower layer. Thus, there will be more momentum
convergence into the source region in the upper layer than in the lower layer, and the
vertical integral of the vorticity flux largely will be roughly equal that of the upper
layer. This is positive in midlatitudes and, to ensure that its latitudinal integral is
zero, it is negative on either side. Using (3.99), a surface wind has the same pattern
as the net vorticity flux, and so is eastward in the mid-latitude source region and
westward on either side.

II. Potential vorticity flux
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Fig. 3.11 Sketch of the potential vorticity fluxes in a two-layer model. The surface
wind is proportional to their vertical integral. The PV fluxes are negative (positive)
in the upper (lower) layer, but are more uniformly distributed at upper levels. The
lower panel shows the net (vertically integrated) PV fluxes, and the associated sur-
face winds.

Rossby waves are generated in the region of baroclinic instability, at approximately
the same latitude in both upper and lower layers. However, because the potential
vorticity gradient is larger in the upper layer than in the lower layer, Rossby waves
are able to propagate more efficiently and breaking and associated dissipation will
tend to be further from the source region in the upper layer than in the lower layer.
Now, the pseudomomentum equation for each layer is

∂Pi
∂t

= ∂
∂t

q′2i
2γi

 = −v′iq′i − D′iq′iγi , i = 1,2. (3.102)

where γi, the potential vorticity gradient, has opposite signs in each layer. In a
statistically steady state, the region of strongest dissipation is the region where the
potential vorticity flux is be most negative. In the upper layer, Rossby-wave propa-
gation allows the dissipation region to spread out from the source, whereas in the
lower layer the dissipation region will be concentrated near the source. The distri-
bution of the potential vorticity flux then becomes as illustrated in Fig. 3.12. The
surface winds, being the vertical integral of the potential vorticity fluxes, are west-
erly in the baroclinic region and easterly to either side.
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Phenomenology of a Two-layer Mid-latitude Atmosphere: a Summary

A radiative forcing that heats low latitudes and cools high latitudes will lead to a inter-
face that slopes upward with increasing latitude, and a poleward total mass flux in the
upper layer and an equatorward flux in the lower layer. The interface implies a thermal
wind shear between the two layers. Neglecting relative vorticity, the potential vorticity
gradients in each layer are given by

∂q1

∂y
= β− f0

H1

∂h1

∂y
> 0 and

∂q2

∂y
= β− f0

H2

∂h2

∂y
Ü 0. (TL.1)

The gradient is large and positive in upper layer and small and negative in the lower layer
— the gradient must change sign if there is to be baroclinic instability which we assume
to be the case. This baroclinic instability generates eddy fluxes that largely determine
the surface winds and the meridional overturning circulation. The zonal momentum
equation in each layer is

∂u1

∂t
= f0v1 + v′1ζ′1 = f0v∗1 + v′1q′1 (TL.2a)

∂u2

∂t
= f0v2 + v′2ζ′2 − ru2 = f0v∗2 + v′2q′2 − ru2 (TL.2b)

In steady state the potential vorticity flux will be equatorward in the upper layer and
poleward in the lower layer. Because the mass flux in each layer is equal and opposite,
the surface wind is given by the vertical integral of the vorticity or potential vorticity
fluxes, namely

rH1u1 = H1v′1q
′
1 +H2v′2q

′
2 = H1v′1ζ

′
1 +H2v′2ζ

′
2 (TL.3)

Because the potential vorticity gradient in the upper layer is large, this layer is more
linear than the lower layer and Rossby waves are better able to transport momentum.
The vorticity flux is thus stronger in the upper layer than the lower and, using (TL.3),
the surface winds are positive (eastward) in the mid-latitude baroclinic zone (see Fig.
3.12). To balance the upper level midlatitude momentum flux convergence a meridional
overturning circulation (a Ferrel cell) is generated. In a steady state f0v1 = −v′1ζ′1 so
that the zonally averaged upper level flow is equatorward. However, the total mass
flux in the upper level is poleward; thus, the equatorward meridional velocity in the
upper branch of the Ferrel cell is an product of an Eulerian zonal average and does not
correspond to a net equatorward mass transport.
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Fig. 3.12 Schema of the eddy fluxes in a two-layer model of an atmosphere with
a single mid-latitude baroclinic zone. The upper layer fluxes are solid lines, the
lower layer fluxes are dashed. The lowest panel shows the sum of the lower and
upper layer vorticity fluxes (or, the same thing, the sum of the potential vorticity
fluxes), which is proportional (when the surface friction is a linear drag) to the
surface wind. The fluxes satisfy the various relationships and integral constraints
of section ?? but are otherwise idealized.
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Momentum balance and the overturning circulation

From thermodynamic arguments we deduced that the residual circulation is ‘direct’,
meaning that warm fluid rises in low latitudes, moves poleward aloft, and returns near
the surface. In low latitudes where eddy effects are small the zonally averaged Eulerian
circulation circulates in the same way, giving us the Hadley Cell. In midlatitudes, we
may determine the Eulerian circulation from the momentum equation, (3.77). In the
upper layer the balance is between the vorticity flux and the Coriolis term, namely

f0v1 = −v′1ζ′1 < 0. (3.103)

That is, the mean Eulerian flow is equatorward, and this is the upper branch of the Ferrel
cell. Note that the Eulerian circulation is in the opposite sense to the residual circulation.

In lower layer the vorticity fluxes are weak and the balance is largely between the
Coriolis force on the meridional wind and the frictional force on the zonal wind. If
the upper layer flow is polewards the lower layer flow must be equatorwards by mass
conservation, and so the zonal wind is positive (eastwards); that is

ru2 ≈ f0v2 = −
H1

H2
f0v1 > 0. (3.104a,b)

where the second inequality follows by mass conservation of the Eulerian flow.
In terms of the TEM form of the equations, (3.82), the corresponding balances in the

center of the domain are:
f0v∗1 = −v′1q′1 > 0, (3.105a)

and

ru2 = f0v∗2 + v′2q′2 = −f0
H1

H2
v∗1 + v′2q′2 =

H1

H2
v′1q

′
1 + v′2q′2 > 0, (3.105b)

using mass conservation. An example of the dynamical balances of the two-layer model
is given in Fig. 3.12)

3.5 THE ANTACTIC CIRCUMPOLAR CHANNEL

We now take a closer look at the Antarctic Circumpolar Current (ACC) itself, with less
of a focus on how the ACC connects the rest of the worlds ocean and more of a focus on
its own internal dynamics. This current system, sketched in Fig. 3.13, differs from other
oceanic regimes primarily in that the flow is, like that of the atmosphere, predominantly
zonal and re-entrant. The two obvious influences on the circulation are the strong, east-
ward winds (the ‘roaring forties’, the ‘furious fifties’, and the ‘screaming sixties’) and the
buoyancy forcing associated with the meridional gradient of atmospheric temperature
and radiative effects which cause ocean cooling at high latitudes and warming at low.
Providing a detailed description of the resulting flow is properly the province of numer-
ical models, and here our goals are much more modest, namely to describe some of the
basic dynamical mechanisms that determine the structure and transport of the system.5
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Figure 3.13 Schema of the ma-
jor currents in the Southern Ocean.
Shown are the South Atlantic sub-
tropic gyre, and the two main cores
of the ACC, associated with the
Polar front and the sub-Antarctic
front.4

3.5.1 Steady and eddying flow

Consider again the simplified geometry of the Southern Ocean as sketched in Fig. ??.
The ocean floor is flat, except for a ridge (or ‘sill’) at the same longitude as the the
gyre walls; this is a crude representation of the topography across the Drake Passage,
that part of the ACC between the tip of South America and the Antarctic Peninsula. In
the planetary geostrophic approximation, the steady response is that of nearly vertical
isopycnals in the area above the sill, as illustrated in Fig. ??. Below the sill a meridional
flow can be supported and the isotherms spread polewards, as illustrated in numerical
solutions using the primitive equations (Fig. 3.14).6

The stratification of the non-eddying simulation is similar to that predicted by the
idealized model illustrated in Fig. ??. However, the steep isotherms within the chan-
nel contain a huge amount of available potential energy (APE), and the flow is highly
baroclinically unstable, and if baroclinic eddies are allowed to form, the solution is dra-
matically different: the isotherms slump, releasing that APE and generating mesoscale
eddies. An important conclusion is that baroclinic eddies are of leading-order importance
in the dynamics of the ACC. A dynamical description of the ACC without eddies would
be qualitatively in error, in much the same way as would a similar description of the
mid-latitude troposphere (i.e., the Ferrel Cell). (However, it is less clear whether these
eddies are important in the interaction of the ACC with the rest of the worlds oceans.)
These eddies transfer both heat and momentum, and much of the rest of our description
will focus on their effects.
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(a) (b)

Fig. 3.14 The zonally-averaged temperature field in numerical solutions of the
primitive equations in a domain similar to that of Fig. ?? (except that here the
channel and sill are nestled against the polewards boundary). Panel (a) shows the
steady solution of a diffusive model with no baroclinic eddies, and (b) shows the
time-averaged solution in a higher resolution model that allows baroclinic eddies
to develop. The dotted lines show the channel boundaries and the sill.7

3.5.2 Vertically integrated momentum balance

The momentum supplied by the strong eastward winds must somehow be removed. Pre-
suming that lateral transfers of momentum are small the momentum must be removed
by fluid contact with the solid earth at the bottom of the channel. Thus, let us first con-
sider the vertically integrated momentum balance in a channel, without regard to how
the momentum might be vertically transferred. We begin with the frictional-geostrophic
balance

f × u = −∇φ+ ∂ τ̃
∂z
, (3.106)

where τ̃ is the kinematic stress (and henceforth we drop the tilde). Integrating over the
depth of the ocean gives [c.f. (??)]

f × û = −∇φ̂−φb∇ηb + τw − τf , (3.107)

where τw is the stress at the surface (due mainly to the wind), and τf is the frictional
stress at the bottom. A hat denotes a vertical integral and φb is the pressure at z = ηb,
where ηb is the z-coordinate of the bottom topography.

The x-component of this equation is just

f v̂ = −∂φ̂
∂x

−φb
∂ηb
∂x

+ τxw − τxf , (3.108)

and on integrating around a line of latitude the term on the left-hand side vanishes by
mass conservation and we are left with∮

[φb
∂ηb
∂x

+ τxw − τxf ]dx = 0. (3.109)
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The first term is the form drag, encountered in sections ?? and ??, and observations and
numerical simulations indicate that it is this, rather than the frictional term τxf , that pre-
dominantly balances the wind stress in the zonally and vertically integrated momentum
balance.8 We return to the question of why this should be so later.

The vorticity balance is also dominated by a balance between bottom pressure torque
and wind stress curl. Taking the curl of (3.107) gives

βv̂ = k · ∇φb ×∇ηb + curlzτw − curlzτf . (3.110)

Now, on integrating over an area bounded by a latitude circle and applying Stokes’s
theorem the β term vanishes by mass conservation and we regain (3.109). This means
that Sverdrup balance, in the usual sense of βv ≈ curlzτw , cannot hold in the zonal
average: the left-hand side vanishes but the right-hand side does not. The same could be
said for the zonal integral of (3.110) across a gyre, but the two cases do differ: In a gyre
Sverdrup balance can (in principle) hold over most of the interior, with mass balance
being satisfied by the presence of an intense western boundary current. In contrast, in a
channel where the dynamics are zonally homogeneous then v must be, on average, zero
at all longitudes and form drag and/or frictional terms must balance the wind-stress curl
in a given water column. Sverdrup balance is thus a less useful foundation for channel
dynamics (at least zonally homogeneous ones) than it is for gyres. Of course, the real
ACC is not zonally homogeneous, and may contain regions of polewards Sverdrup flow
balanced by equatorwards flow in boundary currents along the eastern edges of sills and
continents, and the extent to which Sverdrup flow is a leading-order descriptor of its
dynamics is partly a matter of geography.

We cannot in general completely neglect nonconservative frictional terms, on two
counts. First, they are the means whereby kinetic energy is dissipated. Second, if there is
a contour of constant orographic height encircling the domain (i.e., encircling Antartica)
then the form drag will vanish when integrated along it. However, the same integral of
the wind stress will not vanish, and therefore must be balanced by something else. To
see this explicitly, write the vertically integrated vorticity equation, (3.110), in the form

βv̂ + J(φb, ηb) = curlzτw − curlzτf . (3.111)

If we integrate over an area bounded by a contour of constant orographic height (i.e.,
constant ηb) then both terms on the left-hand side vanish, and the wind-stress along that
line must be balanced by friction. In the real ocean there may be no such contour that is
confined to the ACC — rather, any such contour would meander through the rest of the
ocean; indeed, no such confined contour exists in the idealized geometry of Fig. ??.

3.5.3 Form drag and baroclinic eddies

How does the momentum put in at the surface by the wind stress make its way to the
bottom of the ocean where it may be removed by form drag? We saw in section ?? that
one mechanism is by way of a mean meridional overturning circulation, with an upper
branch in the Ferrel cell and a lower branch at the level of the sill, with no meridional
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Fig. 3.15 Eddy fluxes and form drag in a Southern Hemisphere channel, viewed
from the south. In this example, cold (less buoyant) water flows equatorwards
and warm water polewards, so that v′b′ < 0. The pressure field associated
with this flow (dashed lines) provides a form-drag on the successive layers, Fp,
shown. At the ocean bottom the westward form drag on the fluid arising through
its interaction with the orography of the sea-floor is equal and opposite to that
of the eastward wind-stress at the top. The mass fluxes in each layer are given
by v′h′ ≈ −∂z(v′b′/N2). If the magnitude of buoyancy displacement increases
with depth then v′h′ < 0, providing a polewards mass flux that could balance the
equatorwards mass flux in the Ekman layer.

flow between. However, the presence of baroclinic eddies changes things in two related
ways:

(i) Eddy form drag can pass momentum vertically within the fluid
(ii) Eddies can allow a net meridional mass flux.

Momentum dynamics of layers

Let us first model the channel as a finite number of fluid layers, each of constant density
and lying one on top of the other — a ‘stacked shallow water’ model, equivalent to a
model expressed in isopycnal coordinates. The wind provides a stress on the upper layer
which sets it into motion, and this in turn, via the mechanism of form drag, provides a
stress to the layer below, and so on until the bottom is reached. The lowest layer then
equilibrates via form drag with the bottom topography or via Ekman friction, and the
general mechanism is illustrated in Fig. 3.15.
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Recalling the results of section ??, the form drag at a layer interface is given by

τi = −ηi
∂pi
∂x

= −ρ0fηivi (3.112)

where pi is the pressure and ηi the displacement at the i’th interface (i.e., between the
i’th and i+1 layer as in Fig. 3.16), and the overbar denotes a zonal average. If we define
the averaged meridional transport in each layer by

Vi =
∫ ηi−1

ηi
ρ0v dz (3.113)

then, neglecting the meridional momentum flux divergence (as explained in the next
subsection), the time- and zonally-averaged zonal momentum balance for Boussinesq
layers of fluid are:

−fV 1 = τw − τ1 = η1
∂p1

∂x
+ τw , (3.114a)

−fV i = τxi−1 − τi = −ηi−1
∂pi−1

∂x
+ ηi

∂pi
∂x
, (3.114b)

−fVN = τN−1 − τN = −ηN−1
∂pN−1

∂x
+ ηb

∂pb
∂x

− τf , (3.114c)

where the subscripts 1, i and N refer to the top layer, an interior layer, and the bottom
layer, respectively. Also, ηb is the height of bottom topography and τw is the zonal stress
imparted by the wind which, we assume, is confined to the uppermost layer. The term
τf represents drag at the bottom due to Ekman friction, but we have neglected any other
viscous terms or friction between the layers.

The vertically integrated meridional mass transport must vanish, and thus summing
over all the layers (3.114) becomes

0 = τw − τf − τN (3.115)

or, noting that τN = −ηb∂pb/∂x ,

τw = τf − ηb
∂pb
∂x

. (3.116)

Thus, the stress imparted by the wind (τw) may be communicated vertically through
the fluid by form drag, and ultimately balanced by the sum of the bottom form stress
(τN) and bottom friction (τf ). Note that it is also a type of form drag that leads to
the momentum balance in the steady model of section ??; in that case, the southwards
return flow is nestled against the sill, and the associated Coriolis force is balance by a
pressure force against the sill.
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Momentum dynamics in height coordinates

We now look at these same dynamics in height coordinates, using the quasi-geostrophic
TEM formalism (it may be helpful to review section 3.2 before proceeding). We write
the zonally-averaged momentum equation in the form

− f0v∗ = ∇m ·F +
∂τ
∂z

(3.117)

where v∗ is the residual meridional velocity, τ is the zonal component of the kinematic
stress (wind induced and frictional) and F is the Eliasssen-Palm flux, which satisfies

∇m ·F = − ∂
∂y
u′v′ + ∂

∂z

(
f0

N2v
′b′
)
= v′q′. (3.118)

The stress is typically important only in an Ekman layer at the surface and in a frictional
layer at the bottom. Now, if the horizontal velocity and buoyancy perturbations are re-
lated by v′ ∼ b′/N (see chapter 2) then the two terms comprising the potential vorticity
flux scale as

∂
∂y
u′v′ ∼ v

′2

Le
,

∂
∂z

(
f0
v′b′

bz

)
∼ v

′2

Ld
(3.119)

where Le is the scale of the eddies and Ld is the deformation radius. If the former is much
larger than the latter, as we might expect in a field of developed geostrophic turbulence
(and as is indeed observed in the ACC), then the potential vorticity flux is dominated
by the buoyancy flux [so also justifying the neglect of the lateral momentum fluxes in
(3.114)] and (3.117) becomes

−f0v∗ ≈
∂τ
∂z

+ ∂
∂z

(
f0
v′b′

bz

)
. (3.120)

If we integrate this equation over the depth of the channel the term on the left-hand side
vanishes and we have

τw = τf −
[
f0
v′b′

bz

]0

−H
, (3.121)

where τw is the wind stress and τf is the frictional stress at the bottom. As we noted in
section ??, the vertical component of the EP flux is equivalent to a form stress acting on
a fluid layer, and (3.121) expresses essentially the same momentum balance as (3.116)
(where it was assumed that the stress at the top arises from the wind). Thus, the EP
flux expresses the passage of momentum vertically through the water column, and it is
removed at the bottom through frictional stresses and/or form drag with the orography.

Mass fluxes and thermodynamics

Associated with the form drag is a meridional mass flux, which in the layered model
appears as Vi in each layer. The satisfaction of the momentum balance at a particular
latitude goes hand-in-hand with the satisfaction of the mass balance. Above any topog-
raphy the Eulerian mean momentum equation is (with quasi-geostrophic scaling and
neglecting eddy momentum fluxes),

f0va = τ (3.122)



3.5 The Antactic Circumpolar Channel 87

Fig. 3.16 A schema of the meridional flow in an eddying channel. The eddy-
ing flow may be organized (for example by baroclinic instability) such that, even
though at any given level the Eulerian meridional flow may be small, there is a net
flow in a given isopycnal layer. The residual (v∗) and Eulerian (v) flows are related
by v∗ = v + v′h′/h; thus, the thickness-weighted average of the eddying flow on
the left gives rise to the residual flow on the right, where ηi denotes the mean
elevation of the isopycnal ηi.

where va is the ageostrophic meridional velocity and τ the zonal stress. That is, all
the zonally-averaged meridional flow is ageostrophic and, in this approximation, it is
non-zero only near the surface (i.e., equatorwards Ekman flow) and below the level
of the topography, where it can be supported by friction and/or form drag. Even in an
eddying flow, the Eulerian circulation is primarily confined to the upper Ekman layer and
a frictional or topographically interupted layer at the bottom, as illustrated in Fig. 3.17.
This is a perfectly acceptable description of the flow, and is not an artifact in any way.
However, and analogously to the atmospheric Ferrel Cell (section ?? and ??), if the flow
is unsteady this circulation does not necessarily represent the flow of water parcels, nor
does it imply that water parcels cross isopycnals, as might be suggested by the leftmost
panel of Fig. 3.17. That flow is better represented by the residual flow, or the thickness
weighted flow, and as sketched in Fig. 3.16 there can be a net meridional flow in a given
layer (i.e., of a given water mass type) even when the net meridional Eulerian flow at the
level of mean height of the layer is zero.

The vertically integrated mass flux must of course vanish, and even though one com-
ponent of this — the equatorwards Ekman flow — is determined mechanically, the over-
all sense of the residual circulation cannot be determined by the momentum balance
alone: thermodynamic effects play a role. The thermodynamic equation may be written
in TEM form as

∂b
∂t
+ J(ψ∗, b) = Q[b] (3.123)
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Latitude                        Latitude                      Latitude
←to pole

Fig. 3.17 The meridional circulation in the re-entrant channel of an idealized,
eddying numerical model of the ACC (as in Fig. 3.14, but showing only the region
south of 40° S). Left panel, the zonally averaged Eulerian circulation. Middle panel,
the eddy induced circulation. Right panel, the residual circulation. Solid lines
represent a clockwise circulation and dashed lines, anticlockwise. The faint dotted
lines are the mean isopycnals. Over much of the channel the model ocean is losing
buoyancy (heat) to the atmosphere and so the net, or residual, flow at the surface
is polewards.

where J(ψ∗, b) = (∂yψ∗)(∂zb)− (∂zψ∗)(∂yb) = v∗∂yb+w∗∂zb, ψ∗ is the streamfunc-
tion of the residual flow and Q[b] represents heating and cooling, which occurs mainly
at the surface. In the ocean interior and in statistically steady state we therefore have

J(ψ∗, b) = 0, (3.124)

the general solution of which is ψ∗ = G(b) where G is an arbitrary function. That is,
the residual flow is along isopycnals, and this is approximately satisfied by the numerical
solution shown in Fig. 3.17.

At the surface, however, the flow is generally not adiabatic, because of heat exchange
with the atmosphere. In the simulations shown there is a net heat flux, and consequent
buoyancy loss, from the ocean to the atmosphere at the polewards edge of the domain.
Heat balance is then achieved by a polewards residual flow of warmer fluid at the surface
and sinking at the the highest latitudes. If there were no surface fluxes, and the flow were
everywhere adiabatic, then we can expect the residual circulation to vanish. Note that
the sense of the subsurface circulation determines how the form drag varies with depth;
if the residual flow were zero for example then, either from (3.114) or from (3.120), we
see that the form drag must be constant with depth.
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