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Section 2.

Convection in planetary interiors

2.1 Boussinesq Rayleigh-Bénard convection
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Rayleigh-Bénard convection

Layer of liquid of depth d between two parallel horizontal plates
heated from below.

Hotter fluid expands, becomes less dense, and rises up. At the top,
fluid cools, becomes denser and sinks back to the bottom.

This continual motion carries heat from the bottom of the layer to
the top: heat transport by convection.

If the heating is small, the flow may be steady or vary slowly.

If the heating is strong, the flow is very turbulent.
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Convection occurs on many different scales

Left image is Bénard’s original experiment: layer depth about
1mm, convecting cells similar size. Fluid flow made visible by
aluminium flakes which reflect the light.

Right image is a snapshot of the solar granulation. Each granule is
hot fluid rising, and is typically 1000km across. This process
transports the heat through the outer layers.

The Bénard cells are fairly steady, the solar granules are very
turbulent.
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Boussinesq approximation 1.

The density change that drives the convection is small, so we can
ignore variations of density except when they are multiplied by
gravity.

For a liquid, the density is

ρ = ρ0(1− αT ). (2.1.1)

α is small, so mass conservation is

∇ · u = 0. (2.1.2)

Boussinesq equation of motion is

∂u

∂t
+ (u · ∇)u = − 1

ρ0
∇p − g(1− αT )ẑ + ν∇2u. (2.1.3)

which is the Navier-Stokes equation. Here p is the pressure, ν is
the kinematic viscosity (units m2s−1).
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Boussinesq approximation 2.

The temperature equation is

∂T

∂t
+ u · ∇T = κ∇2T . (2.1.4)

Here κ is the thermal diffusivity. It also has units m2s−1.

The thermal conductivity of the fluid is K = ρcpκ, where cp is the
specific heat at constant pressure.

This Boussinesq convection problem was discussed by Rayleigh in
1916. A nice treatment is given in Chandrasekhar, 1961.

The Boussinesq equations have a basic state conduction solution,
where the fluid is at rest, and heat is tranported only by thermal
conduction.

As the temperature difference across the layer is increased, at a
certain value the fluid starts to move.
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Basic State

The basic state solution has zero velocity and temperature fixed in
time and a function of z only

0 = − 1

ρ0
∇p − g(1− αT )ẑ (2.1.5)

and
0 = κ∇2T . (2.1.6)

The solution is

T = T̄ = T0 + ∆T (1− z/d), (2.1.7)

p = p̄ = p0 − ρ0gz(1− αT0 − α∆T )− 1

2
ρ0gα∆Tz2. (2.1.8)

The heat flux carried by conduction is
F = −K dT

dz = κρcp
∆T
d Watts per square metre.
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2.2 Linear theory of Rayleigh-Bénard convection
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Stability of the basic state: onset of convection

We imagine the bottom plate temperature being slowly increased,
i.e. ∆T slowly increased. There comes a point when the layer
starts to convect.
Close to onset, the velocity will be small, so u · ∇u will be small
compared to ν∇2u, so we can neglect it. The temperature will
only be slightly different from the basic state, so we write

T = T0 + ∆T (1− z/d) + θ (2.2.1)

where θ is small compared to ∆T , and p = p̄ + p′.
The linearised dimensional equations are then

∂u

∂t
= − 1

ρ0
∇p′ + gαθẑ + ν∇2u, (2.2.2)

∇ · u = 0, (2.2.3)

∂θ

∂t
= uz∆T/d + κ∇2θ. (2.2.4)
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Non-dimensional equations 1.

Note that the two terms which can be neglected close to onset are
(u · ∇)u in the equation of motion, and u · ∇θ in the temperature
equation. They become important again as ∆T is increased.

We now write the equations in dimensionless form. The advantage
of doing this is that the key dimensionless parameters appear, so
we know how big the parameter space of our problem is.

Sometimes though it is useful to have dimensional equations as
well, as then we can more easily see which terms are important in
geophysical applications.

There are several possible choices, all lead to the same set of
dimensionless parameters, but they appear in different places in the
equations.
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Non-dimensional equations 2.

Our choice is

∂

∂t
=

κ

d2

∂

∂ t̃
, ∇ =

1

d
∇̃, u =

ν

d
ũ, θ =

ν∆T

κ
θ̃, p′ =

ρ0ν
2

d2
p̃′

(2.2.5)
giving

1

Pr

∂ũ

∂ t̃
= −∇p̃′ + Raθ̃ẑ + ∇̃2ũ, ∇ · ũ = 0, (2.2.6, 7)

∂θ̃

∂ t̃
= ũz + ∇̃2θ̃. (2.2.8)

Here

Ra =
gα∆Td3

κν
, Pr =

ν

κ
, (2.2.9)

are the two dimensionless parameters called the Rayleigh number
and the Prandtl number.
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Non-dimensional equations 3.

At this stage it is conventional to drop the tildes in the equations.
This sometimes confuses students, because the untilded variables
might be dimensionless or might have dimensions. But it is too
tiresome to keep writing tildes, so you just have to be careful to
check whether the variables are dimensionless or not. So the
dimensionless linearised equations are

1

Pr

∂u

∂t
= −∇p′ + Raθẑ +∇2u, (2.2.10)

∇ · u = 0, (2.2.11)

∂θ

∂t
= uz +∇2θ. (2.2.121)
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How big is the Rayleigh number?

The Rayleigh number is

Ra =
gα∆Td3

κν
.

In a Bénard experiment with water, in S.I units (metres, seconds,
kg, ◦K) g ≈ 10, α ≈ 10−4, ∆T ≈ 1, d ≈ 10−3, κ ≈ 10−5,
ν ≈ 10−4, for water.

Ra =
10−12

10−9
≈ 1000,

which as we will see is around the critical value for the onset of
convection.
The Prandtl number ν/κ for water is usually taken as 6.8, for air it
is about 0.7, and it is small for liquid metals.
For solar material, ∆T and d are very large, so the Rayleigh
number is enormous, and it is very large in geophysical
applications. So in practice Ra is massively supercritical. Is linear
theory relevant in planets?
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Boundary conditions

The temperature is fixed at z = 0 and the top boundary z = 1. So
we need θ = 0 at z = 0 and z = 1.

The fluid cannot penetrate the boundaries, so we must have
uz = 0 at z = 0 and z = 1.

The natural two remaining boundary conditions would be to set the
horizontal velocities ux and uy zero at z = 0 and z = 1. From the
continuity equation (8) this gives duz/dz = 0 at z = 0 and z = 1.

However, Rayleigh noticed that if we take stress-free boundary
conditions, dux/dz = duy/dz = 0, this gives d2uz/dz2 = 0 on the
boundaries and then there is a simple exact solution, so people
often use stress-free boundary conditions (illustrative boundary
conditions) to get an initial idea of the behaviour.
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Solving the linear equations

We take the curl of the equation of motion (2.2.10). Recall that
ζ = ∇× u is the vorticity of the fluid, and

ζz =
∂uy

∂x
− ∂ux

∂y
. (2.2.13)

The curl of (2.2.10) gives the vorticity equation, and the z
component gives

1

Pr

∂ζz
∂t

= ∇2ζz . (2.2.14)

The buoyancy force only generates horizontal vorticity, not vertical
vorticity.

An important point is that ∇×∇p = 0, so taking the curl
eliminates the awkward pressure term.
(2.2.13) is a diffusion equation, so if the vertical vorticity is zero at
the boundaries, it diffuses away to zero everywhere, ζz = 0.
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The double curl equation

We take the curl of the vorticity equation, which is the double curl
of the equation of motion (2.2.10).

1

Pr
∇×∇× ∂u

∂t
= Ra∇×∇× θẑ +∇×∇×∇2u (2.2.15)

Using ∇ · u = 0 and the vector identity curl curl = grad div - del2,
we get

1

Pr

∂

∂t
∇2uz = Ra∇2

Hθ +∇4uz , where ∇2
h =

∂2

∂x2
+

∂2

∂y2
.

(2.2.16)
The double curl procedure looks complicated at first sight, but it is
often the best way to solve the convection equations even if there
are nonlinear equations and additional affects like rotation,
magnetic fields or compressibility.
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The linear stability ODE

With the θ equation (2.2.11)

∂θ

∂t
= uz +∇2θ, (2.2.17)

we now have just two scalar unknowns, uz and θ.
We look for solutions which are periodic in x and y , and have
time-dependence expσt , uz = W (z)exp[i(kxx + kyy) + σt],
θ = Θ(z)exp[i(kxx + kyy) + σt] and putting these into (2.2.15)
and (2.2.16), letting a2 = k2

x + k2
y ,(

d2

dz2
− a2 − σ

Pr

)(
d2

dz2
− a2 − σ

)(
d2

dz2
− a2

)
W +Ra a2W = 0.

(2.2.18)
This is a 6th order system of ODE’s in z , so we need 6 boundary
conditions.
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Equation for the growth rate σ

With stress free boundary conditions, W = 0 and D2W = 0,
D = d/dz , and then Θ = 0 is equivalent to D4uz = 0 since(

d2

dz2
− a2 − σ

Pr

)(
d2

dz2
− a2

)
W = Ra a2Θ. (2.2.19)

So the solution is W (z) = sin nπz , for integer n, giving

σ2 + (n2π2 + a2)σ(1 + Pr) + (n2π2 + a2)2Pr − a2RaPr

(n2π2 + a2)
= 0.

(2.2.20)
This gives a steady solution σ = 0 when

Ra = Rac =
(n2π2 + a2)3

a2
, (2.2.21)

and if Ra is greater than this critical value, there is a solution with
σ > 0 so the disturbance grows exponentially.
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Dispersion relation for Ra

If Ra < Rac , σ has negative real part, so the disturbance decays
away with time.

The values of a and n which minimise the critical Rayleigh number
are the important critical values. n = 1 is always the minimum.

There is a minimum at ac = π/
√

2, where Rac = 27π4/4 ≈ 657,
Below this value all disturbances decay, while if Ra > Rac a band
of wavenumbers grow exponentially.
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No-slip boundary case

In the more realistic no-slip case the boundary conditions are
W = DW = Θ = 0 on z = 0, 1, and then sinπz isn’t a solution.

However, the 6th order ODE can be integrated numerically with
the no-slip boundary conditions, and the critical Rayleigh number
plot looks similar.

In this case, Rac ≈ 1707.76 and the minimising a ≈ 3.117, close to
π.

Lots of other cases are possible, e.g. one no-slip, one stress-free
boundary, or fixed flux boundaries dΘ/dz = 0.
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Pattern selection in convection

If Ra is just above Rac , a band of wavenumbers near

a = ac =
√

k2
x + k2

y can grow.

Initially there will be small random perturbations due to
imperfections in the experiment, which will be made up of all
wavenumbers. Only the unstable ones will grow, the others will
decay, so the growing disturbance will contain only the unstable
wavenumbers.

However, this does not give a unique pattern. There could be
two-dimensional rolls aligned along the x axis, with ky = ac and
kx = 0, or aligned along the y axis, with kx = ac and ky = 0.

Could also have square cells with kx = ky = ac/
√

2. Even possible
to have hexagonal cells.
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Some observed convection patterns

Left: Two dimensional convection rolls. Middle: Square cells.
Right: hexagonal cells.

Which mode actually occurs depends on the nonlinear terms.
Although very small, over a very long time scale a preferred
pattern generally appears.

Which pattern depends on the boundary conditions, and the
Rayleigh and Prandtl numbers.
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Stably stratified fluid

What happens if ∆T < 0, so top boundary is hotter than lower
boundary?
Ra < 0, and we have stably stratified fluid.
The limit Ra→ −∞ corresponds to the small diffusion limit, and
(2.2.20) becomes

σ2 =
a2RaPr

n2π2 + a2
. (2.2.22)

Restoring the dimensions,

σ2 = −gαβ
a2d2

n2π2 + a2d2
, (2.2.23)

where β = −∆T/d , so β is now a positive temperature gradient.
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Internal gravity waves

Taking the square root of this negative quantity,

σ = ±i (gαβ)1/2 ad√
n2π2 + a2d2

. (2.2.24)

Since σ is now imaginary, the time dependence expσt corresponds
to waves.
These waves are called internal gravity waves. The quantity

N = (gαβ)1/2

is called the buoyancy frequency. If there is some viscous and
thermal diffusion, then the internal gravity waves are damped.
Physically, in a stably stratified layer, if a parcel of fluid moves
upwards, it finds itself in less dense surroundings, so it falls back.
The buoyancy is now a restoring force.
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2.3 Nonlinear Rayleigh-Bénard convection
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Nonlinear convection

As the Rayleigh number is
increased, the horizontally
averaged temperature profile
changes.

Boundary layers appear, across which the temperature varies
rapidly. The interior temperature becomes nearly constant.

The heat transport is mainly by conduction in the boundary layers,
and by convection in the bulk interior.

If the boundary layer has thickness δ, the heat flux transported is

F = K
∆T

2δ
>> Fbasic = K

∆T

d
(2.3.1)

The dimensionless ratio F/Fbasic = Nu, the Nusselt number.
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Malkus-Howard convection theory

At large Rayleigh number, Nu ≈ d/2δ.
The Rayleigh number (2.2.9) is

Ra =
gα∆Td3

κν
.

Malkus-Howard idea is that the thickness of the boundary layer
makes it close to critical, so

Rabl =
gα∆T δ3

κν
≈ 103. (2.3.2)

So

Ra =
gα∆Td3

κν
≈ gα∆T δ3

κν
8Nu3 ≈ 8× 103Nu3, (2.3.3)

giving
Nu ∼ Ra1/3. (2.3.4)

Experiments suggest that the 1/3 law is close, though not all
experiments agree.
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Averaged heat flux

The temperature equation (2.1.4) is

∂T

∂t
+ u · ∇T = κ∇2T .

Average over a horizontal plane at z ,

〈a〉h =
1

LxLy

∫ Lx/2

−Lx/2

∫ Ly/2

−Ly/2
a dxdy , Lx →∞, Ly →∞. (2.3.5)

∂ 〈T 〉h
∂t

+ 〈∇ · (uT )− T∇ · u〉h = κ

〈
∂2T

∂x2
+
∂2T

∂y2
+
∂2T

∂z2

〉
h

,

but averages of x or y derivatives are zero, and ∇ · u = 0. So

∂ 〈T 〉h
∂t

+

〈
∂

∂z
(uzT )

〉
h

= κ

〈
∂2T

∂z2

〉
h
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Convective and conductive heat flux

We now take the time-average, so the ∂/∂t term goes,〈
∂

∂z
(uzT )

〉
h

= κ

〈
∂2T

∂z2

〉
h

(2.3.6)

true at every z level. Integrate from 0 to z ′ to get

〈(uzT )〉z ′ = κ

〈
∂T

∂z

〉
z ′
− κ

〈
∂T

∂z

〉
0

〈(uzT )〉z ′ − κ
〈
∂T

∂z

〉
z ′

= F , (2.3.7)

because F is the heat flux conducted in at the bottom of the layer.
< (uzT ) >z ′ is the convected heat flux at level z ′ and
−κ < ∂T

∂z >z ′ is the conducted heat flux at level z ′.
Note the convected heat flux is positive because hot fluid rises and
cold fluid sinks.
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Dissipation integral 1.

Equation of motion (2.1.3) is

∂u

∂t
+ (u · ∇)u = − 1

ρ0
∇p′ + gαT ẑ + ν∇2u,

taking out the hydrostatic part of the pressure. We take the scalar
product of this with u and average over x , y , z , and t

u·∂u

∂t
=
∂(u2/2)

∂t
, u·(u·∇)u = ∇·(u(u2/2)), u·∇p′ = ∇·(p′u),

and all these terms vanish when we average. For the last term

ui
∂2ui

∂x2
j

=
∂

∂xj

(
ui
∂ui

∂xj

)
− ∂ui

∂xj

∂ui

∂xj
, (2.3.8)

giving

gα

∫ d

0
〈uzT 〉z ′ dz ′ = ν

∫ d

0

〈
∂ui

∂xj

∂ui

∂xj

〉
z ′

dz ′. (2.3.9)
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Dissipation integral 2.

We now integrate the heat flux relation across the layer,

gα

∫ d

0
〈(uzT )〉z ′ − κ

〈
∂T

∂z

〉
z ′

dz ′ = gαFd (2.3.10)

or

ν

∫ d

0

〈(
∂ui

∂xj

)2
〉

z ′

dz ′ = gαFd − κgα∆T . (2.3.11)

Now
Fd = Nuκ∆T , gα∆T = Raκν/d3

So the dissipation integral can be written∫ d

0

〈(
∂ui

∂xj

)2
〉

z ′

dz ′ =
κ2Ra(Nu − 1)

d3
. (2.3.12)
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Grossmann-Lohse theory 1.

This method is based on estimating where the majority of the
dissipation comes from. It may be in the boundary layers, or it may
be in the bulk.

In their picture there is a large scale flow with typical velocity U
which develops a viscous boundary layer.
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Grossmann-Lohse theory 2.

Depending on the Prandtl number, the viscous boundary layer will
be inside or outside the thermal boundary layer. (2.3.12) gives

ν

∫ d

0
〈∇u : ∇u〉 dz =

ν3

d3
RaNuPr−2, Nu >> 1. (2.3.13)

If the dissipation is mainly in the boundary layers, we analyse these
boundary layers to estimate ν 〈∇u : ∇u〉. Different estimates also
possible if dissipation is in the bulk.

(2.3) Nonlinear Rayleigh-Bénard convection 33/85



Pr > 1 case, dissipation in boundary layers 1.

δth

δν

i

i

Ui

Ui
δ
δν

th
i

i

Pr > 1 means the thermal boundary layer
is nested inside the viscous boundary layer.

U is large scale flow speed in bulk, δν , δth

viscous and thermal b.l. thicknesses.

Velocity at edge of thermal b.l. = δthU/δν .

Advection balances diffusion in the boundary layers, (2.1.3) is

∂u

∂t
+ (u · ∇)u = − 1

ρ0
∇p − g(1− αT )ẑ + ν∇2u.

In the boundary layers dominant horizontal terms are (u · ∇)u and
νd2u/dz2.

This means that
U2

d
∼ νU

(δν)2
. (2.3.14)
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Pr > 1 case, dissipation in boundary layers 2.

Advection balances diffusion in the boundary layers in the
temperature equation too, (2.1.4),

∂T

∂t
+ u · ∇T = κ∇2T

In the boundary layers dominant terms here are u · ∇T and
κd2T/dz2. This gives

UT

d
∼ κT

(δth)2

giving
δth

δν
UT

d
∼ κT

(δth)2
,

U2

d
∼ νU

(δν)2
, (2.3.15)

which gives

δν/δth = Pr1/3 (2.3.16), d/δν = (Ud/ν)1/2 = Re1/2, (2.3.17)

where Re is the Reynolds number of the flow.
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Pr > 1 case, dissipation in boundary layers 3.

Since from (2.3.1) F = K ∆T
2δth , Fbasic = K ∆T

d ,

Nu = F/Fbasic ∼ d

2δth
∼ d

2δν
Pm1/3 ∼ Re1/2Pm1/3. (2.3.18)

Now we use the dissipation integral (2.3.13)∫ d

0
〈∇u : ∇u〉 dz =

ν2

d3
RaNuPr−2, Nu >> 1.

Estimating the dissipation in the b.l.s,∫ d

0
〈∇u : ∇u〉 dz ∼=

U2

δν
=

Re2ν2

d2

Re1/2

d
= Re5/2 ν

2

d3
(2.3.19)

⇒ RaNuPr−2 ∼ Re5/2 ⇒ Nu ∼ Ra1/4Pr−1/12. (2.3.20)
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2.4 Rotating flows
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Rotating flows

We now consider the onset of thermal convection in a rotating
frame. Experimentally this is done by putting the convecting layer
on a rotating turntable.

Also interested in convection in planets and stars, which usually
rotate. Here the gravity is directed towards the centre of the
planet or star, which rotates about its polar axis.

We can consider the rotational acceleration as providing a Coriolis
force 2ρΩ× u, u being the fluid velocity, and a centrifugal force
ρΩ× (Ω× r). Centrifugal force can be written as a gradient of a
potential, and so can be combined with the gravity force. Coriolis
force is the crucial new ingredient.
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The centrifugal terms

The effects of the Coriolis force are often more significant than the
centrifugal force. If the rotation vector is in the z direction, and we
take cylindrical polars (R, φ, z) then Ω× (Ω× r) = Ω2RR̂. But
this is just the gradient of the potential ∇1

2 Ω2R2.

We already have a term like this: gravity. So the centrifugal term
just changes the gravity force. On Earth, the centrifugal term is
quite small compared to the g , so its more convenient to think of
the centrifugal force just changing gravity a bit rather than being a
fundamentally new term.

In some experiments, the centrifugal term can be larger than
gravity, which is a way of mimicking a radial gravity as found in a
planet or star.
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When are Coriolis terms important?

Compare u · ∇u and 2Ω× u. If the flow is varying on a length
scale L, then u · ∇u ∼ U2/L very roughly. 2Ω× u ∼ ΩU again
roughly, so the ratio of these terms is the Rossby number

Ro =
U

ΩL
. (2.4.1)

If the Rossby number is large, Coriolis force won’t be important
but if it is small it will be an important part of the acceleration.

For the Earth Ω ∼ 7× 10−5, a weather system can easily be 1000
km (= 106 m) across, and wind speeds are typically of order 10
m/s, giving Ro ∼ 1/7 quite small, so rotation is important.

Same is true for ocean currents. Flows in rapidly rotating
machinery can also have Ro small.
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Taylor-Proudman theorem: geostrophic flow

Suppose we have slow, (low Ro), steady (no ∂u/∂t), inviscid flow.
Then 2ρΩ× u = −∇p + ρg, including the centrifugal term in
gravity.
The curl of this equation gives

∇× 2ρ(Ω× u) = 2ρΩ(∇ · u)− 2ρ(Ω · ∇)u = 0

⇒ (Ω · ∇)u = 0 (2.4.2)

since Ω(∇ · u) = 0 if the fluid is incompressible. The velocity in a
rotating fluid is independent of the rotation axis direction, z . The
fluid has to flow in columns, independent of z .
This is the Taylor-Proudman theorem, and is the most important
and remarkable result in rotating fluids. It is why rotating fluids
behave so differently from non-rotating fluids.
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Taylor’s penny experiment

Taylor built an experiment in
which he towed a penny along
the bottom of a rotating tank
of water. The column of water
is made visible by adding dye.

All the water in the column of fluid above the penny moved along
with the penny.

The fluid near the penny had to move with the penny as it was
towed along, and by the z-independence of the flow, all the fluid in
the column above has to move too.
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Dye in non-rotating fluid movie

The fluid is at rest and the tank is stirred by hand, then dye is
added. Fluid disperses in three dimensions, very different from the
2D rotating case.
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Dye in rotating fluid movie

The fluid is on a rotating turntable, and the camera is fixed in the
frame of the turntable. The tank is stirred by hand, then dye is
added. Main view is from above, but side view shown at the start.
Fluid moves in two-dimensional sheets.
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2.5 Plane layer rotating convection
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Rotating Convection problems

The rotating plane layer

Rotation parallel to gravity, centrifugal acceleration negligible. This
is the most common configuration for doing laboratory
experiments, and the one where most is known about the nonlinear
behaviour.

A standard Rayleigh-Bénard convection cell is put on a turntable
rotating fast enough for the Rossby number to be small, but not so
fast that centrifugal terms are important.
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Plane layer experiments

Left: Bénard convection with no rotation. Right: Bénard
convection with mild rotation. H.T.Rossby, JFM 36, 309 (1969).
Note the smaller length scale cells in the rotating case.
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Plane layer model

Chandrasekhar, 1961. The linearised equation of motion is (2.2.2)
with the Coriolis term,

∂u

∂t
+ 2Ωẑ× u = −1

ρ
∇p′ + gαθẑ + ν∇2u. (2.5.1)

The temperature equation is

∂θ

∂t
= βuz + κ∇2θ, (2.5.2)

β = ∆T/d , and the Boussinesq continuity equation is

∇ · u = 0, (2.5.3)

since the fluid is incompressible. Rayleigh-Bénard + Coriolis term.
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Vorticity equation

Take the curl to eliminate pressure, forming the vorticity equation.
Recall

∇× (a× b) = (b · ∇)a− (a · ∇)b + a∇ · b− b∇ · a,

so ∇× (ẑ× u) = −∂u/∂z .
So

∂ζ
∂t
− 2Ω

∂u

∂z
= gα∇× θẑ + ν∇2ζ. (2.5.4)

Note that z-vorticity can be created by fluid stretching in the
z-direction. Vertical vorticity is now coupled into the linear system
in the rotating case.
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Inertial waves 1.

We first retain the ∂/∂t term but ignore the others (assume
temporarily the fluid is homogeneous and inviscid) to get

∂ζ
∂t
− 2Ω

∂u

∂z
= 0. (2.5.5)

The curl of this gives

∂

∂t
∇2u + 2Ω

∂ζ
∂z

= 0 (2.5.6)

and eliminating ζ gives the wave equation

∂2

∂t2
∇2u = −4Ω2∂

2u

∂z2
. (2.5.7)

These are inertial waves. Vortex lines behave like stretched strings:
if you bend them they vibrate about the straight position.
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Inertial waves 2.

The solution is

u = u0 exp i(kxx + kyy + kzz − ωt), (2.5.8)

and then

ω2 =
4Ω2k2

z

k2
, k2 = k2

x + k2
y + k2

z , (2.5.9)

is the inertial wave dispersion relation. Note that columnar motion
has kz small, so ω is small. Also we must have |ω| < 2Ω.

If viscosity is restored, waves are damped.

Note that if we let ω/2Ω = cos θ, kz/|k| = cos θ, so waves of given
frequency travel with a definite angle θ to the z axis.
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Inertial waves in the laboratory

Inertial waves excited by a vibrating
cylinder in a rotating water tank. If
Ω · k = |Ω||k| cos θ, cos θ is uniquely set by
ω, so waves travel at specific angle.

These waves have not been seen in the
Earth’s core, because we have no means of
detecting them, but they are seen in
rotating MHD experiments.

If Ω nearly perpendicular to k, the waves are much slower. If
k ·Ω = 0, no z-dependence, the motion is called geostrophic. If
kz << k⊥ it is called quasi-geostrophic (QG). QG waves are called
Rossby waves.
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Convection in a plane parallel layer

The z-component of the vorticity equation is

∂ζz
∂t
− 2Ω

∂uz

∂z
= ν∇2ζz , (2.5.10)

and the z-component of the double curl gives

∂

∂t
∇2uz + 2Ω

∂ζz
∂z

= gα∇2
Hθ + ν∇4uz , (2.5.11)

and then (2.5.2), (2.5.10) and (2.5.11) give

(
∂

∂t
− ν∇2)2(

∂

∂t
− κ∇2)∇2uz + 4Ω2(

∂

∂t
− κ∇2)

∂2uz

∂z2

= gαβ∇2
H(

∂

∂t
− ν∇2)uz . (2.5.12)

where ∇2
H = ∂2/∂x2 + ∂2/∂y2.
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Plane layer model: dispersion relation

For stress-free, constant temperature boundaries, the solution is

uz = A sinπz exp i(kxx + kyy) expσt, (2.5.13)

which satisfies all the stress-free boundary conditions, and we get

(σ + π2 + a2)2(Prσ + π2 + a2)(π2 + a2) + (Prσ + π2 + a2)E−24π2

= a2Ra(σ + π2 + a2) (2.5.14)

where

E =
ν

Ωd2
, Ra =

gαβ

κν
, a2 = k2

x + k2
y , Pr =

ν

κ
, (2.5.15)

and E is the Ekman number, Ra the Rayleigh number, and Pr the
Prandtl number.

(2.5) Plane layer rotating convection 54/85



Steady modes 1.

First look for neutral modes for the onset of steady convection,
σ = 0. Then (2.5.14) simplifies to

Rasteady =
(π2 + a2)3

a2
+

4π2

E 2a2
. (2.5.16)

Note that as E →∞ we get the classic Rayleigh-Bénard dispersion
relation. If E is finite, the onset of convection is delayed by
rotation, so rotation is normally a stabilising influence.
Letting x = a2/π2,

dRasteady

dx
= 0 when 2x3 + 3x2 = 1 +

4E−2

π4
. (2.5.17)

As E → 0 , x3 ∼ 2E−2/π4 or

a ∼ (2π2)1/6E−1/3, (2.5.18)

(2.5) Plane layer rotating convection 55/85



Steady modes 2.

So a is large for rapid rotation which means onset occurs as tall
thin columns, width ∼ E 1/3.
This is because viscosity is essential for convection, and at small E
viscosity can only act over short length scales. So the columns
have to be tall and thin. Note this columnar structure is the best
the fluid can do to obey the Taylor-Proudman theorem.
In the small E limit,

Ra ∼ 3a4 ∼ 3(2π2)2/3E−4/3 (2.5.19)

so the critical Rayleigh number gets very large at small E .
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Oscillatory modes 1.

To see if we can get oscillatory modes we let σ = iω in (2.5.14)
and look at real and imaginary parts. This gives

−ω2Pr(π2 +a2)+(π2 +a2)3(2+Pr)+4PrE−2π2 = a2Ra, (2.5.20)

−ω2(1 + 2Pr)(π2 + a2) + (π2 + a2)3 + 4E−2π2 = a2Ra. (2.5.21)

Could eliminate ω2 between these to get the critical Ra for
oscillatory modes, Raosc . However, first note that (2.5.20) - Pr ×
(2.5.21) gives

2ω2Pr2(π2 + a2) + 2(π2 + a2)3 = a2Ra(1− Pr), (2.5.22)

which shows that oscillatory modes can only occur if Pr < 1.
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Oscillatory modes 2.

However, if Pr < 1 it is possible to find oscillatory modes.

Indeed, if Pr is sufficiently small the minimum critical Rayleigh
number for oscillatory convection is lower than the minimum
critical for steady convection, so if the Rayleigh number is slowly
increased, oscillatory modes onset first at low Prandtl number.

In the limit E → 0 the critical value of Pr for oscillatory modes to
onset first is Pr = 0.6766.

As with non-rotating case, other boundary conditions, e.g. no-slip
boumdaries can be dealt with numerically. Nothing radically
different happens.
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2.6 Nonlinear rotating convection
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Plane layer model: nonlinear simulations

Numerical simulations
(Stellmach et al. 2014) at
E = 10−7. These are for
no-slip boundaries, and the
temperature perturbation
is shown. (a) just above
critical Ra, (b-d) at
increasing Ra. Pr = 7.

In (a) the local Rossby
number Ro = U/`Ω is
small, but inertia becomes
important at higher Ra.
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Near the onset of convection

For Ra just above Rac :

Horizontal and vertical slices of the axial vorticity (E = 5× 10−6):

Convective structures near the onset:

• Multitude of small vortices of either sign, driven directly by
buoyancy

• Elongated structures with horizontal size decreasing with Ekman
number

• Mid-plane antisymmetry of the axial vorticity
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Formation of large-scale vortices (LSV)

For Ra ≈ 3Rac :
During the growing phase: During the saturated phase:

Clustering of small cyclonic vortices into a fast cyclonic circulation.

Convective vortices advected by a slower anticyclonic circulation.

Regions of intense shear: horizontal stretching of the convective
vortices.
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Structure of the large-scale vortices (LSV)

Horizontal and vertical slices of the axial vorticity

Flow dominated by a cyclone: never an anticyclone. Always grows
to the box size.

LSVs are mostly z-invariant, but outside the LSV small structures
are z-dependent.

Periodic horizontal boundary conditions: horizontal average of ζz is
zero.

LSVs essentially horizontal motions (not a convective structure)
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Nusselt number versus Rayleigh number

King et al. 2012.

Laboratory Experiments:
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Rotation delays the onset of convection, but the Nusselt number
then grows rapidly.

When Ro ∼ O(1) the Nusselt number curve goes back to the
nonrotating value. LSVs only found on the rapidly rotating part of
the curve.
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2.7 Rotating spherical conection: Busse annulus
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Rotating convection in spheres

Left. Sketch of the nature of convection between concentric
rotating spheres. Right. Experimental apparatus. Centrifugal
acceleration much larger than gravity. Inner sphere cooled. F.H.
Busse and C.R. Carrigan, Science, 191, 81-83 (1976).
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Rotating convection experiment in a sphere

Snapshots of their convection experiments in rapidly rotating
spheres. Left: small inner sphere. Right: large inner sphere. Note
the convection columns.
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The Busse annulus model

Busse annulus captures the
essential feature, the sloping
boundaries. We assume the
flow is almost 2D, so the hori-
zontal motion is described by a
streamfunction ψ, but there is
a small slope χ to the bound-
aries. Gravity radially inward,
temperature T = T0 at y = 0,
T = T0 + ∆T at y = d , so
T = T0 + (y/d)∆T + θ.

Gap-width is d , annulus height is L.

We let ux = −∂ψ/∂y and uy = ∂ψ/∂x . The temperature gradient
driving the convection is in the y direction.
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Busse annulus 1.

The temperature gradient can now drive z-vorticity, and the
z-component of the linearised vorticity equation is now

∂ζz
∂t
− 2Ω

∂uz

∂z
= −gα

∂θ

∂x
+ ν∇2ζz , (2.7.1)

since gravity is in the y -direction, perpendicular to the rotation
vector. So buoyancy drives z-vorticity directly.

Average over z , column length H,

∂

∂t

1

H

∫ H

0
ζz dz − 2Ω

H
[uz(H/2)− uz(−H/2)] = −gα

H

∂

∂x

∫ H

0
θ dz

+
ν

H
∇2

∫ H

0
ζz dz (2.7.2)
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Busse annulus 2.

Now since the slope at the boundaries is a small angle χ,
uz = ±χuy on the endwalls z = ±H/2, and we replace the
vorticity and temperature with its z average,

∂ζz
∂t
− 4Ωχ

H
uy = −gα

∂θ

∂x
+ ν∇2ζz . (2.7.3)

Since we have averaged out the z-dependence, and the
z-component of velocity is small compared to the x and y
components, we can introduce a streamfunction

u = −∇× ψẑ (2.7.4)

so then ζz = ∇2
Hψ, uy = ∂ψ/∂x .
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Busse annulus 3.

So we get after non-dimensionalising the linearised equations

∂ζz
∂t
− β∂ψ

∂x
= −Ra

∂θ

∂x
+∇2ζz , (2.7.5)

Pr
∂θ

∂t
= −∂ψ

∂x
+∇2θ, (2.7.6)

ζz = ∇2
Hψ, (2.7.7)

where

Ra =
gα∆Td3

κν
, β =

4Ωχd3

νH
. (2.7.8)

Note that in the annulus model β is no longer the temperature
gradient! β plays the role of the inverse Ekman number here. It is
also related to the beta-effect in geophysical fluid dynamics.
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Busse annulus dispersion relation 1.

We look for solutions

ψ = A sinπy exp i(kx − ωt) (2.7.9)

Substituting in to (2.7.5)-(2.7.7) gives

−iω(π2 + k2)(π2 + k2 − iωPr) + ikβ(π2 + k2 − iωPr)

= k2Ra− (π2 + k2)2(π2 + k2 − iωPr). (2.7.10)

The imaginary part of this gives

ω =
βk

(π2 + k2)(1 + Pr)
(2.7.11)

and the real part gives

Ra =
(π2 + k2)3

k2
+

β2k2Pr2

(π2 + k2)(1 + Pr)2
. (2.7.12)
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Busse annulus dispersion relation 2.

In the annulus model convection is always oscillatory. Waves
described by (2.7.11) are thermal Rossby waves.

If we drop the buoyancy term and the viscosity, (2.7.5) and (2.7.7)
give (2.7.11) with Pr = 0 which is the standard Rossby wave
dispersion relation. The restoring force comes from the sloping
boundaries. If a column of fluid moves towards the axis, it
stretches and the vortex tension brings it back.

Since ω/k > 0 these Rossby waves travel eastward. In geophysical
fluid dynamics, the beta effect comes from a variation in the
Coriolis parameter at different latitudes, and has the opposite sign,
so in the atmosphere Rossby waves travel westward.
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Busse Annulus: large β asymptotics

If we take the large β limit (low viscosity), and minimise Ra over
k , the optimising k is large, so we have tall thin columns again.
In fact the lowest critical Ra occurs when

k =
β1/3Pr1/3

21/6(1 + Pr)1/3
, ω =

β2/321/6

Pr1/3(1 + Pr)2/3
,

Ra =
3β4/3Pr4/3

22/3(1 + Pr)4/3
. (2.7.13)

Note that the dependencies are very similar to those in plane layer
convection with β playing the role of E−1.
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Nonlinear equations in the annulus

If we add in the advection terms for ζz and θ we get the nonlinear
Busse annulus equations

∂ζz
∂t

+ (u · ∇)ζz − β∂ψ
∂x

= −Ra
∂θ

∂x
+∇2ζz , (2.7.14)

Pr

(
∂θ

∂t
+ (u · ∇)θ

)
= −∂ψ

∂x
+∇2θ, (2.7.15)

ζz = ∇2
Hψ. (2.7.16)

These can be integrated in time fairly easily, because they are only
two-dimensional in x and y .
It is also possible to add in a term proportional to −ζz in (2.7.14)
(Rotvig and Jones, 2006) to represent friction acting on the top
and bottom boundaries.

(2.7) Rotating spherical conection: Busse annulus 75/85



Zonal jet formation in the annulus

The x direction is eastward, and
the y direction is towards the
rotation axis.
These simulations have
β = 7× 105 and Ra = 2.5Racrit .
Multiple jet solutions occur when
there is some bottom friction,
stress-free boundaries give fewer
jets.
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Quasi-geostrophic approximation

The Busse annulus model assumes the angle of the boundary χ is
small. The vertical velocity is then small, and the 2D equations are
asymptotically valid as χ→ 0.

In spherical geometry, the angle χ is not small, but nevertheless
flow behaves similarly to that in full spherical simulations.

In the QGA, the 2D annulus equations in s and φ are integrated
forward in time, but the varying slope of the boundary is taken into
account.

The QGA model is popular, because 2D simulations are much less
demanding than 3D simulations.
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Onset of convection in a sphere

Contours of axial vorticity.
Sequence with
E = 3× 10−5,
10−5,E = 3× 10−6, 10−6.
Picture by Emmanuel
Dormy.

Note convection onsets
first near tangent cylinder
(where field is strongest in
the dynamo). Convection
columns get thinner at
smaller E .
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Rapidly rotating convection: equatorial sections

Contours of axial vorticity
at E = 10−7. Top,
numerical calculations.
Bottom asymptotic theory.
Left internal heating, right
differential heating.

For radius ratio 0.35,
internal heating sets in
first in the interior. Note
good agreement between
asymptotics and numerics.
Note also spiralling nature
of solution.
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2.8 Scaling laws in convection
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Scaling laws

No simulations can reach the very small Ekman number found in
planetary cores.

The aim of scaling law work is to understand how key quantities
such as the convective velocity and heat flux scale with Ekman
number. The hope is that we can then use simulations at relatively
large E to estimate what will happens at small E .

Physical arguments are based on the force balance:

Inertia Coriolis Buoyancy Lorentz Viscous
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Heat transport and typical velocity

In nonlinear theories, the temperature fluctuation has to be
estimated from heat flux,

Fconv =

∫
S
ρcpUrθ dS/4πr2 ∼ ρcpU∗T∗, (2.8.1)

where U∗ and T∗ are root mean square velocity and temperature
fluctuations, and cp is the specific heat.

This assumes that there is a strong correlation between hot fluid
and rising fluid. In rotating convection this is not so clear!

In strongly nonlinear convection, balance is between inertia and
buoyancy, the mixing length theory, so

U2
∗/d ∼ gαT∗ ∼ gαF/ρcpU∗. (2.8.2)

In compressible convection d is usually taken as the density scale
height, in Boussinseq convection as the distance between the
boundaries.
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Mixing length theory

Mixing length theory: U2
∗/d ∼ gαT∗ ∼ gαF/ρcpU∗.

Gives the Deardorff velocity

U∗ ∼
(

gαFd

ρcp

)1/3

(2.8.3)

which works well in laboratory experiments.

In the core, for 1TW of convective heat flux this gives U∗ about 10
times too big. Suggests that rotation/magnetic field is slowing
down the convection.

B(vii). Scaling laws in Rotating Convection 83/85



Inertial theory of rotating convection

Vorticity equation

u · ∇ζ− 2(Ω · ∇)u = ∇× gαθr̂, (2.8.4)

ingoring viscosity. This gives

U2
∗

L2
⊥
∼ ΩU∗

d
∼ gαθ

L⊥
. (2.8.5)

Here U∗ is typical convective velocity. |ω| ∼ U∗/L⊥,
d = rcmb − ricb,
L⊥ is length scale perpendicular to z , the roll axis.

L⊥ ∼
(

U∗d

Ω

)1/2

∼
(

5× 10−4 × 2× 106

7× 10−5

)1/2

∼ 4km (2.8.6)

L⊥ is Rhines length, balance of inertia and Coriolis. On longer
length scales, inertia << Coriolis.
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Heat flux estimate: Inertial theory of rotating convection

Convective heat flux per square metre Fconv ∼ ρcpU∗θ.
Eliminate θ to get

U∗
Ωd

= Ro ∼
(

gαFconv

ρcpΩ3d2

)2/5

= (RaQ)2/5. (2.8.7)

For compositional convection, gαFconv is replaced by the buoyancy
flux.
Fitting data from dynamo simulations, CA2006 obtained

Ro = 0.85Ra0.41
Q (2.8.8)

very close to inertial scaling. Predicted velocity can be compared
with westward drift velocity in the Earth’s core.
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