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Subsolidus convection

I Solid surface planets and planetary objects (icy satellites, dwarf planets) show signs of
deformation in the solid state, whether active or in their past.

I In many cases: thermal convection.
I Very large viscosity =⇒ slow motion. The bottleneck for the thermal evolution of planetary

objects with solid surface.
I In many cases, a liquid layer exists below (metallic core, water ocean) whose dynamics is

controlled by the rate of heat extraction by convection in the solid.
I Convection can also happen in solid shells or spheres deep inside planetary objects: inner core, HP

ice layers of Titan, Ganymede.
=⇒ Important to understand convection in planetary mantles.



Part I

Fundamentals of Rayleigh-Bénard convection
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Experiments by Bénard

Bénard (1900a,b, 1901) conducted the first systematic experiments on flow driven by a destabilising
temperature difference.
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Rayleigh’s theory
I Rayleigh (1916) proposed the first theory for the linear stability of a steady conductive state in a

gravity field. He showed that a minimum temperature gradient is necessary for the onset of
convection, that depends on several physical parameters.

I Block (1956) showed that the flow in Bénard’s experiments is not driven by gravity but by
temperature–dependence of surface tension, the Marangoni effect. Pearson (1958) developed the
corresponding theory.

I Rayleigh–Bénard convection is still used to denote convection driven by the
temperature–dependence of density in a gravity field while Bénard’s setup is called
Bénard–Marangoni.
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General principles

In order to pose a fluid dynamical problem, we write:
I Conservations equations: mass, momentum, energy.
I Well established, universal although several level of approximations are possible.

I Boundary conditions (BC): classical ones (Dirichlet, Neumann, Robin) or more exotic (phase
change BC).

I Constitutive equations: Fourier’s law, rheology, equation of state.
I Can be quite complex.
I Generally poorly constrained for the planetary interiors.



Conservation equations

dS

u

V

I Consider a fixed control volume.
I The balance equation for a quantity with mass

density f is written:

∂

∂t

∫
V
ρf dV = −

∫
S

J f · dS +
∫

V
σf dV

where the flux J f and the production σf
express basic laws of physics.

I Use Gauss’ theorem:
⇒ ∂ρf

∂t = −∇ · J f + σf
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Mass conservation

I No production: ⇒ σf = 0
I Convective flow only: J f = ρu

∂

∂t

∫
V
ρ dV = −

∫
S
ρu · dS ⇒

∫
V

∂ρ

∂t dV = −
∫

V
∇ · (ρu) dV

⇒ ∂ρ

∂t + u ·∇ρ ≡ Dρ
Dt = −ρ∇ · u

I Incompressible flow: ∇ · u = 0.
I Note

D
Dt ≡

∂

∂t + u ·∇.



Momentum

ρ
Du
Dt = −∇P +∇ · τ + ρg

Local expression of Newton’s 2nd law with
I forces applied to the surface: pressure P and deviatoric stress τ .
I body forces: gravity ρg.
I Other terms need to be added when dealing with other planetary layers: Coriolis acceleration,

Lorentz force.



Energy conservation

First principle of thermodynamics leads to:

ρ
De
Dt = −∇ · q − P∇ · u + τ : ∇u + ρh

Includes
I Viscous dissipation: τ : ∇u
I Radiogenic or tidal heat production: ρh



Entropy balance

I Internal energy e is developed as function of two state variables s and ρ (add composition if
necessary).

de = T dS − P dV → De
Dt = T Ds

Dt + P
ρ2

Dρ
Dt

I Combine the equation for internal energy:

ρT Ds
Dt = −∇ · q + τ : ∇u + ρh

I In the generic form of a conservation equation:

ρ
Ds
Dt = −∇ · q

T︸ ︷︷ ︸
echange

+ −1
T2 q ·∇T + τ : ∇u + ρH

T︸ ︷︷ ︸
production≥0



Equation for the temperature

Depending on the choice of state variable, (T ,P) or (T , ρ):

ρCp
DT
Dt = −∇ · q + αT DP

Dt + τ : ∇u + ρh

ρCV
DT
Dt = −∇ · q + αTKT∇ · u + τ : ∇u + ρh

In the case of incompressibility (Boussinesq approximation, see below), the two equations become
identical.



Mechanical boundary condition: dynamic topography
Ricard et al. (2014)

I Free surface BC applied on the topography z = h(x, y, t):

σ(x, y, h(x, y, t), t) · n̂ = 0. (1)

I Hydrostatic balance nearly holds

⇒ τ = O(ρgh) and h = O(α∆T d).

⇒ develop linearly eq. (1):
σ(x, y, 0, t) · n̂ + ρg · n̂h(x, y, t) = 0. (2)

I The slope of the topography is O(α∆Td/L) with L the horizontal wavelength of convection. It is
small enough that equation (2) can be simplified to

σzz(x, y, 0, t) = −ρgh(x, y, t), (3)
τzx(x, y, 0, t) = τzx(x, y, 0, t) = 0. (4)
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Equation for the topography
Ricard et al. (2014)

I Kinematic definition of the topography, with uh and wh the horizontal and vertical components of
velocity of the surface:

∂h
∂t + uh ·∇h = wh .

I Neglect ∇h and assume wh = uz(x, y, 0, t)

⇒ ∂h
∂t = uz(x, y, 0, t)

I Difficulty: time scale for the evolution of the topography, τη = η/ρgd = O(3× 103 yr)
(post–glacial rebound) very short compared to mantle dynamics time scale.

⇒ Most numerical studies consider instantaneous adjustment of topography and use the free–slip
BCs:

uz(x, y, 0, t) = 0 (5)
τzx(x, y, 0, t) = τzx(x, y, 0, t) = 0. (6)

I Topography is removed from the problem but can be computed as an output by

σzz(x, y, 0, t) = −ρgh(x, y, t).
I In experiments, non–deformable container implies no–slip BC: u = 0.



Equation for the topography
Ricard et al. (2014)

I Kinematic definition of the topography, with uh and wh the horizontal and vertical components of
velocity of the surface:

∂h
∂t + uh ·∇h = wh .

I Neglect ∇h and assume wh = uz(x, y, 0, t)

⇒ ∂h
∂t = uz(x, y, 0, t)

I Difficulty: time scale for the evolution of the topography, τη = η/ρgd = O(3× 103 yr)
(post–glacial rebound) very short compared to mantle dynamics time scale.

⇒ Most numerical studies consider instantaneous adjustment of topography and use the free–slip
BCs:

uz(x, y, 0, t) = 0 (5)
τzx(x, y, 0, t) = τzx(x, y, 0, t) = 0. (6)

I Topography is removed from the problem but can be computed as an output by

σzz(x, y, 0, t) = −ρgh(x, y, t).
I In experiments, non–deformable container implies no–slip BC: u = 0.



Equation for the topography
Ricard et al. (2014)

I Kinematic definition of the topography, with uh and wh the horizontal and vertical components of
velocity of the surface:

∂h
∂t + uh ·∇h = wh .

I Neglect ∇h and assume wh = uz(x, y, 0, t)

⇒ ∂h
∂t = uz(x, y, 0, t)

I Difficulty: time scale for the evolution of the topography, τη = η/ρgd = O(3× 103 yr)
(post–glacial rebound) very short compared to mantle dynamics time scale.

⇒ Most numerical studies consider instantaneous adjustment of topography and use the free–slip
BCs:

uz(x, y, 0, t) = 0 (5)
τzx(x, y, 0, t) = τzx(x, y, 0, t) = 0. (6)

I Topography is removed from the problem but can be computed as an output by

σzz(x, y, 0, t) = −ρgh(x, y, t).
I In experiments, non–deformable container implies no–slip BC: u = 0.



Equation for the topography
Ricard et al. (2014)

I Kinematic definition of the topography, with uh and wh the horizontal and vertical components of
velocity of the surface:

∂h
∂t + uh ·∇h = wh .

I Neglect ∇h and assume wh = uz(x, y, 0, t)

⇒ ∂h
∂t = uz(x, y, 0, t)

I Difficulty: time scale for the evolution of the topography, τη = η/ρgd = O(3× 103 yr)
(post–glacial rebound) very short compared to mantle dynamics time scale.

⇒ Most numerical studies consider instantaneous adjustment of topography and use the free–slip
BCs:

uz(x, y, 0, t) = 0 (5)
τzx(x, y, 0, t) = τzx(x, y, 0, t) = 0. (6)

I Topography is removed from the problem but can be computed as an output by

σzz(x, y, 0, t) = −ρgh(x, y, t).
I In experiments, non–deformable container implies no–slip BC: u = 0.



Equation for the topography
Ricard et al. (2014)

I Kinematic definition of the topography, with uh and wh the horizontal and vertical components of
velocity of the surface:

∂h
∂t + uh ·∇h = wh .

I Neglect ∇h and assume wh = uz(x, y, 0, t)

⇒ ∂h
∂t = uz(x, y, 0, t)

I Difficulty: time scale for the evolution of the topography, τη = η/ρgd = O(3× 103 yr)
(post–glacial rebound) very short compared to mantle dynamics time scale.

⇒ Most numerical studies consider instantaneous adjustment of topography and use the free–slip
BCs:

uz(x, y, 0, t) = 0 (5)
τzx(x, y, 0, t) = τzx(x, y, 0, t) = 0. (6)

I Topography is removed from the problem but can be computed as an output by

σzz(x, y, 0, t) = −ρgh(x, y, t).
I In experiments, non–deformable container implies no–slip BC: u = 0.



Equation for the topography
Ricard et al. (2014)

I Kinematic definition of the topography, with uh and wh the horizontal and vertical components of
velocity of the surface:

∂h
∂t + uh ·∇h = wh .

I Neglect ∇h and assume wh = uz(x, y, 0, t)

⇒ ∂h
∂t = uz(x, y, 0, t)

I Difficulty: time scale for the evolution of the topography, τη = η/ρgd = O(3× 103 yr)
(post–glacial rebound) very short compared to mantle dynamics time scale.

⇒ Most numerical studies consider instantaneous adjustment of topography and use the free–slip
BCs:

uz(x, y, 0, t) = 0 (5)
τzx(x, y, 0, t) = τzx(x, y, 0, t) = 0. (6)

I Topography is removed from the problem but can be computed as an output by

σzz(x, y, 0, t) = −ρgh(x, y, t).
I In experiments, non–deformable container implies no–slip BC: u = 0.



Thermal boundary conditions

I Solids in contact with low viscosity fluids above and/or below that can be considered as well
mixed: uniform temperature.

I Experiments: fluid in contact with a lid. Continuity of temperature and heat flux. In
dimensionless form, it can be written as a Robin BC:

Biθ + ∂θ

∂z = 0

with θ the temperature anomaly and Bi the Biot number.
I Bi →∞: fixed temperature (Dirichlet BC)
I Bi → 0: fixed flux (Neumann BC)
Reality is often in–between. May apply to the effect of continents on mantle convection (Grigné
et al., 2007a,b).



Constitutive equations 1: Fourier’s law

q = −k∇T

I Second principle:
−1
T2 q ·∇T = k

(
∇T
T

)2

≥ 0⇒ k > 0

I Valid for a very wide range of materials and temperature gradients.
I For crystals, usually anisotropic:

q = −k ·∇T ⇔ qi = −kij∂jT

This is probably the case in the Earth’s mantle where seismic anisotropy is measured.
I Second principle : eigenvalues of k > 0
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Constitutive equations 2: Rheology I

I Total stress σ has to be related to the strain rate tensor, e = 1
2 (∇u +∇uT ) ≡ (∂jui + ∂iuj)/2.

Isolating the thermodynamic pressure, P:

σ = −PI + F(e).

I Define the P = σkk/3, the average pressure, and τ , the deviatoric stress as

σ = −PI + τ .

I Newtonian rheology: F is a linear function, i.e.

σij = −Pδij + cijklekl .

I For an isotropic fluid (which is not the case of Earth’s mantle, Pouilloux et al., 2007)

σij = −Pδij + λekkδij + 2ηeij .
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Constitutive equations 2: Rheology II

I Considering the trace of tensors and the rest, one gets

τij = η

(
∂ui

∂xj
+ ∂uj

∂xi
− 2

3δij∇ · u
)
, (7)

P = P −
(
λ+ 2

3η
)
∇ · u. (8)

I The bulk viscosity, ζ = λ+ 2η/3 is difficult to measure and usually assumed zero (Stokes
hypothesis), which gives

σij = −Pδij + η

(
∂ui

∂xj
+ ∂uj

∂xi
− 2

3δij∇ · u
)
.
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Equation of state

I Origin of motion: change of density (ρ) with temperature (T).
⇒ Thermal expansion coefficient:

α = −1
ρ

(
∂ρ

∂T

)
P
.

I Minimal (linear) equation:
ρ = ρ0

[
1− α (T − T0)

]
.

I Effect of pressure

ρ = ρ0

[
1− α (T − T0) + P − P0

KT

]
Important but not leading order since pressure variation is dominated by the hydrostatic, i.e. in
the direction of g. Not considered at first!

I Effect of composition: needs additional parameters such as the FeO mass fraction for the Earth
mantle.
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The Oberbeck–Boussinesq approximation

I Boussinesq (1903) and Oberbeck (1879) propose to simplify the full equations by setting the
density constant in all terms but the buoyancy term.

I At the same level of approximation (more on that later) the dissipation is negligible and
Cp = Cv ≡ C .

I The minimal set of equations for convection are (neglecting internal heating for now)

∇ · u = 0, (9)

ρ0
Du
Dt = −∇P + ρg + η∇2u, (10)

DT
Dt = κ∇2T , (11)

ρ = ρ0
[
1− α(T − T0)

]
, (12)

I and boundary conditions.
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Generalities

I The problem (the equations) always admit several solutions, notably a motionless steady
conduction solution

⇒ What controls the onset of motion? The (in–)stability of the steady conduction solution.
I What forms do the solutions take with motion?



Dimensional analysis: the Rayleigh number

d

T=T0

T=T0+ΔT

I Buoyancy: ρgα∆T ∼ ρv/τc ∼ ρd/τ2
c .

⇒ Convective time: τ2
c = d/gα∆T .

I Diffusive time: τd = d2/κ.
I Viscous time: τv = d2/ν = ρd2/η

I Convection if τvτd/τ
2
c >> 1

Ra ≡ α∆Tgd3

κν
> Rc ∼ 103

Gross estimate for Earth’s mantle: Ra ∼ 108
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Perturbation equations

The system of equation admits a motionless (u = 0) steady (∂t = 0) conduction solution:

∇P = ρg (13)
∇2T = 0 (14)

ρ = ρ0
[
1− α(T − T0)

]
(15)

T(d) = T0 and T(0) = T0 + ∆T (16)

⇒ Tc = T0 + ∆T − z
d ∆T (17)

ρc = ρ0

[
1− α∆T

(
1− z

d

)]
⇒ Pc = ... (18)

Write equations for the perturbations of the steady conduction solution, θ = T − Tc, p = P − Pc:

∇ · u = 0 (19)

ρ0
Du
Dt = −∇p − ρ0αθg + η∇2u (20)

Dθ
Dt = ∆T

d uz + κ∇2θ (21)



Dimensionless equations

I There are several ways of doing it but I choose here

x ′, y′ = x, y
d ; z ′ = z

d + 1
2 ; θ′ = θ

∆T ; t′ = κt
d2 ; p′ = pd2

κη

I We get, after dropping the ′s:

∇ · u = 0 (22)
1

Pr
Du
Dt = −∇p +∇2u + Raθẑ (23)

Dθ
Dt = uz +∇2θ (24)

I with

Ra = ρ0gα∆Td3

κη
the Rayleigh number (25)

Pr = η

ρ0κ
the Prandtl number (26)

I and boundary conditions at z = ±1/2 (free–slip for now)

θ = 0; uz = 0; ∂zux = ∂zuy = 0⇒ ∂2
z uz = 0.



Dimensionless equations

I There are several ways of doing it but I choose here

x ′, y′ = x, y
d ; z ′ = z

d + 1
2 ; θ′ = θ

∆T ; t′ = κt
d2 ; p′ = pd2

κη

I We get, after dropping the ′s:

∇ · u = 0 (22)
1

Pr
Du
Dt = −∇p +∇2u + Raθẑ (23)
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The Prandtl number

I Characteristics of the working fluid
I Liquid water: Pr ∼ 7
I Earth’s mantle: Pr ∼ 1025

I Water ice: Pr ∼ 1017

⇒ Inertia term negligible for convection in solids!
I Kinetic energy of Earth’s mantle (mass 4× 1024 kg), assuming a mean velocity of 3 cm/yr is
∼ 2× 106 J. Similar to a car driving at 100 km/hr.

⇒ The Prandtl number is taken as infinite.



Mode decomposition for the linear problem I

I Considering infinitely small perturbations of the conduction solution, the problem can be linearised:

∇ · u = 0 (27)
1

Pr
∂u
∂t = −∇p +∇2u + Raθẑ (28)

∂θ

∂t = uz +∇2θ (29)

I The perturbation can be developed in time–dependent Fourier modes and, for a linear problem,
each mode can be analysed independently. The problem is independent of the horizontal
orientation and we choose:

(θ, p, ux , uz) = (Θ(z),P(z),U (z),W (z))eσteikx .

I If <(σ) > 0 the instability grows.
I The conduction solution is stable if all modes of perturbation have <(σ) < 0



Mode decomposition for the linear problem II

I Denoting D≡ d
dz

ikU + DW = 0, (30)

Pr
[
−ikP +

(
D2−k2)U

]
= σU , (31)

Pr
[
−DP +

(
D2−k2)W + RaΘ

]
= σW , (32)

W +
(

D2−k2)Θ = σΘ (33)

I This is a generalised eigenvalue problem of the form:

L ·X = σR ·X (34)

with X = (P; U ; W ; Θ)T the global vertical mode and R a diagonal matrix with 0 or 1 on the
diagonal.

I with boundary conditions for the free–slip case

W
(
±1

2

)
= 0; DU

(
±1

2

)
= 0; Θ

(
±1

2

)
= 0



The linear operator is self–adjoint

I Define the dot product of two modes as

〈X2|X1〉 =
∫

ei(k1−k2)x
∫ 1

2

− 1
2

[
P̄2P1 + Ū2U1 + W̄2W 1 + RaΘ̄2Θ1

]
dz dx

with Ū the complex–conjugate of U , etc.
I Then a series of integrations by part, using the boundary conditions, allows you to show (Schlüter

et al., 1965) that
〈X2|LX1〉 = 〈LX2|X1〉

meaning that the Linear problem is self–adjoint. The R operator is also self–adjoint.
⇒ All the eigenvalues are real:

〈X |LX〉 = 〈X |σRX〉 = σ 〈X |RX〉
〈LX |X〉 = 〈σRX |X〉 = σ̄ 〈RX |X〉

⇒ σ = <(σ)
I The instability is characterised by the change of sign of σ. We just need to search for σ = 0

(neutral stability).



Solution for free–slip BCs

I When both boundaries are free–slip,
W = cos(πz) provides the solution.

I Neutral stability:

Rac =
(
π2 + k2)3

k2

I Minimum value

Rc = 27π4

4 ' 657 for kc = π√
2

I First unstable mode has wavelength

λc = 2π
kc

= 2
√

2.

⇒ rolls
√

2 wider than they are tall.



Numerical technique for more general BCs
I Rigid BC: uz = ux = 0. Since ∂xux + ∂zuz = 0, this implies that ∂zuz = 0 at the boundary.
I For at least one rigid BC, solution has to be computed numerically, for example by series

expansion of the vertical mode.
I A simple way: use differentiation matrices with Chebyshev colocation pseudo-spectral method

(e.g. Guo et al., 2012).
I A function F(z) defined on [−1, 1] is discretised on Chebyshev–Gauss–Lobatto nodal points

zi = cos(iπ/N ), for i = 0..N , to get vector F ≡ (Fi)i=0..N .
I The nth derivative at the same points is simply obtained using the corresponding differentiation

matrix D(n):
F (n) = D(n) · F

I The linear operator L is written as a block matrix where the D operator is replaced by the
differentiation matrix.

I Lines corresponding to the boundaries are replaced by corresponding BCs, with a 0 on the
diagonal of R, or simply removed for Dirichlet BCs.

I Use an eigenvector–eigenvalue solver (e.g. in Python) to find the eigenvalue as function of Ra.
Differentiation matrices are available in Python at https://github.com/labrosse/dmsuite.

I Procedure:
I For a given wavenumber k, find the value Ra(k) that makes σ = 0.
I Find the value of k that minimizes Ra(k)

https://github.com/labrosse/dmsuite
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The linear operator with free-slip BCs

L =

0 : N 0 : N 0 : N 1 : N − 1



0 ikI D 0 0 : N
0 D 0 0 0

−Pr ikI Pr
(

D(2) − k2I
)

0 0 1 : N − 1

0 D 0 0 N

−PrD 0 Pr
(

D(2) − k2I
)

PrRaI 1 : N − 1

0 0 I
(

D(2) − k2I
)

1 : N − 1

applies to vector X = (P,U ,W ,Θ)T as

L ·X = σR ·X .

I For infinite Pr , divide the velocity equations by Pr and make the corresponding diagonal values of
R zero.

I Filter out infinite eigenvalues that are due to the zeros on the diagonal of R.



Effect of mechanical BCs on the linear stability
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Weakly non-linear analysis I

I A method pioneered by Malkus and Veronis (1958) for free-slip BCs and Schlüter et al. (1965) for
rigid BCs. See also Manneville (2004).

I The conservation equations are split in their linear and non-linear parts:

L(∂t , ∂x , ∂z ,Ra)X = N(X ,X), (35)

with X = (p; u; w; θ)T . The linear operator is further developed around the critical Rayleigh
number as

L = Lc − (Ra − Rac)M. (36)

The solution X and the Rayleigh number are developed as

X = εX1 + ε2X2 + ε3X3 + ... (37)
Ra = Rac + εRa1 + ε2Ra2 + ... (38)



Weakly non-linear analysis II

and we get a set of equations for the increasing order of ε:

LcX1 = 0, (39)
LcX2 = N(X1,X1) + Ra1MX1, (40)
LcX3 = N(X1,X2) + N(X2,X1) + Ra1MX2 + Ra2MX1. (41)

LcXn =
n−1∑
l=1

N(X l ,Xn−l) +
n−1∑
l=1

RalMXn−l (42)

I Solvability condition for each degree obtained by taking the dot product by Xc and using the
Hermitian property ⇒ values of Rai .

I We can prove (Labrosse et al., 2018) that Ra2n+1 = 0 so that, to leading order,

ε =
√

Ra − Rac

Ra2
, (43)

Nu = 1 + A Ra − Rac

Rac
, (44)

with Nu = qd/k∆T the Nusselt number, the dimensionless heat flux.
I In the case of free-slip boundary conditions, the coefficient A = 2 can be determined analytically.



Stability of finite amplitude solutions

I Schlüter et al. (1965) showed that only rolls are stable finite amplitude solutions close to the onset
of convection.

I Busse (1967) showed that a finite range of wavenumber leads to stable roll solution.

(Busse 1967; Busse & Whitehead, 1971)



Example calculation close to onset

I Ra = 800, Pr =∞.
I Aspect ratio = 32× 32× 1.
I Initial condition: conductive solution plus

random noise.
I Pattern dynamics with long–distance

interactions between defects.
I Steady–state: Rolls at π/4 angle so that a

natural number of 2
√

2 wavelength fit.
I Method of solution: finite differences and

multigrid (Sotin and Labrosse, 1999).


Tmid800_0_32x32_1-10.mpg
Media File (video/mpeg)



Experimental test of Busse (1967)’s theory
Busse and Whitehead (1971)

(Busse & Whitehead, 1971)
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Experimental test of Busse (1967)’s theory
Busse and Whitehead (1971)

Fig. 10: Cross-roll instability at R=3000, d=5 mm, α=2π/1.64.Time intervals between 
subsequent photographs are 10, 4, 3, 7 and 28 min, respectively. 

(Busse & Whitehead, 1971)



Experimental test of Busse (1967)’s theory
Busse and Whitehead (1971)

Fig. 11: Zigzag instability at R=3600, d=5 mm, α=2π/2.8.Time intervals between 
subsequent photographs are 9, 10, 10, 26 and 72 min, respectively. 

(Busse & Whitehead, 1971)



Experimental test of Busse (1967)’s theory
Busse and Whitehead (1971)

Fig. 15: Pinching instability at R=18x103, d=1 cm, α1=2π/2.55, α1=2π/1.7.
Time intervals between the photographs is 35 min. (Busse & Whitehead, 1971)



Experiments vs. theory of Busse balloon

I Very good match of observations to the
theory!



Origin of the hexagonal flow

I Many experiments (starting with Bénard’s) lead to hexagonal patterns.
I Hexagonal patterns are non–symmetrical with respect to z → −z tranformation, whereas rolls are.
I Hexagonal flow is obtained for asymmetrical conditions such as provided by depth– or

temperature–dependent properties (e.g. η(T)) or volumetric heat generation (figure).
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Example calculation at high Ra

I Ra = 107, Pr =∞, aspect ratio 4× 4× 1
I Initial conditions: T = 1/2 and exponential variation in thin layers to match BCs plus small

random noise.
I Two iso-temperature surface represented.


t1e7_0_4x4_1-6.mpg
Media File (video/mpeg)



Regime diagram in the (Ra, Pr) space
Krishnamurti (1973)

(Krishnamurti, 1973)

Ra = 107

Ra = 105

(Sotin & Labrosse, 1999)



Temperature profiles
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Advection and conduction profiles

I Integrate the energy balance equation between the top boundary and any depth z, averaged over
time:

qtop ≡ −
∂T
∂z

(
z = 1

2

)
= − ∂T

∂z (z) + uz(T(z)− T).

I Increase of velocity with Ra makes the advection increase ⇒ thickness of boundary layers
decreases to match the heat flow.
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Simple dimensional argument for the heat flow

I Dimensionless heat flow Nu = qd/k∆T = f (Ra) = ARaβ to be valid over large range of Ra
values.

I At very large Ra, boundary layers and the resulting plumes get very small.
I The dynamics of convection and the resulting heat flow should become independent of the total

thickness:

q = Ak∆T
d

(
gα∆Td3

κν

)β
⇒ β = 1

3 .



Boundary layer instabilities

t=0.00010, q=25.04

t=0.00040, q=13.74

t=0.00058 q=15.43 t=0.00066 q=24.67

t=0.00052 q=13.11

t=0.00020, q=18.68



Howard’s model I

Howard (1964) proposed a simple model for convection at high Ra:
I Based on observations of boundary layers (BL) instabilities.
I Boundary layer grows by diffusion.
I BL becomes unstable when its Rayleigh number reaches a critical value.
I Cycle restarts.
I Ergodicity assumptions: horizontal average on an infinite layer equals time average on one cycle.
I Diffusive part of the cycle takes much longer than destabilisation part ⇒ dominates the time

average.

⇒ T = 1
tc

∫ tc

0

∆T
2 erf

(
0.5− z
2
√
κt

)
dt

for the top boundary layer and something equivalent at the bottom.
I Heat flux

q = 1
tc

∫ tc

0

k∆T
2
√
πκt

dt = k∆T√
πκtc

= k∆T
δc

.
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Howard’s model II

I The thickness δc is determined by the instability of the boundary layer

Raδ = gα∆Tδ3
c

2κν = Ra
2

(
δc

d

)3

= Rδc.

I Heat flux then scales as

q = k∆T
d

(
Ra

2Rδc

)1/3

.

I As noted by Howard (1964) Rδc is different from the critical value for the stability of the whole
layer since it concerns the destabilisation of a curved profile.

I This theory provides a scaling relation for the fluctuation time of the boundary layer:

tc = δ2
c
πκ

= d2

πκ

(
2Rδc

Ra

)2/3

.
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Experiments at very high Ra
Niemela et al. (2000)

(Niemela et al, 2000)

Slope β=
0.309 mean field

β=2/7

β=1/3

β=0.309

I Working fluid: cryogenic helium.
I Pr ∼ 1
I 1 m–high tank.
I Exponent β close to but different

from 1/3.
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