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Solid–liquid interfaces in planetary sciences

▶ Convection in planetary mantles interacting with a liquid layer above
and/or below. Applies to:
▶ magma ocean above the mantle during its crystallisation (∼ 10Ma).
▶ Basal magma ocean for a longer period (few Gyr, Labrosse et al,

2007).
▶ Icy satellites with a buried ocean below one or between two possibly

convecting ice layers.
▶ The inner core of terrestrial planets.

Titan

(image modified from A Taviani)
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Conservation equations

We consider a solid that behaves like a very viscous fluid on long time-scales ⇒ Infinite Prandtl
number.

∇ · u = 0 (1)
− ∇p + ∇2u + RaTez = 0 (2)
∂T
∂t + u · ∇T = ∇2T + H (3)

Usual boundary conditions:
▶ Imposed temperature owing to efficient mixing in adjacent domain (atmosphere, ocean, liquid

core).
▶ Non-penetrative: uz = 0 on a horizontal boundary.
▶ Free-slip: ∂zux = ∂zuy = 0.

But in fact, flow in the solid ⇒ dynamic topography.



Phase change boundary conditions

ve
rt

ic
al

co
or

di
na

te
, z

h

Convecting solid

Turbulent ocean

MeltingFreezing

q < qref

q > qref

Temperature

Latent heat and FeO

Isentrope
Liquidus

▶ Viscous stress in the solid mantle ⇒ topography builds with timescale τη = η
∆ρgd

▶ Heat transfer in the liquid erases topography with timescale τϕ = − ρs L
ρl cpl ul

∂ Tm
∂r

▶ Competition of the two processes controlled by Φ = τϕ

τη

−Φvr + 2 ∂vr

∂r − p = 0
▶ Φ → ∞ ⇒ classical non-penetrative boundary condition (vr = 0).
▶ Φ → 0 ⇒ permeable boundary condition (vr ̸= 0).
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The translation mode of convection
Labrosse et al. (2018)
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▶ Rigid vertical translation of the solid with continuous
phase change at each boundary is possible if

Ra ≥ Rac = 12
(
Φ+ + Φ−)

,

▶ In the large Rayleigh number limit (Ra > 2Rac)

|uz | = Nu = 6Ra
Rac
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Physical interpretation
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▶ The extra weight of the topography is
balanced by the buoyancy associated with the
high temperature, i.e. assuming an infinitely
thin boundary layer:

αρ0g ∆TH
2 = ∆ρ+gh+ + ∆ρ−gh−,

▶ The topography is related to the velocity by

h± = τϕ± uz .

▶ In dimensionless form:

uz ∼ ± Ra
2 (Φ+ + Φ−) = ±6Ra

Rc
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Convective modes at onset for Φ+ = Φ− ≡ Φ±

Φ+ = Φ− = 105:

0.0 0.5 1.0 1.5 2.0 2.5

x

0.4

0.2

0.0

0.2

0.4
z

0.8
0.6
0.4
0.2

0.0
0.2
0.4
0.6
0.8

Te
m

pe
ra

tu
re

 Θ

1.0 1.5 2.0 2.5 3.0 3.5
Wavenumber

600

700

800

900

1000

1100

1200

R
ay

le
ig

h 
nu

m
be

r

Ramin = 657. 38; k= 2. 23

Close to Rayleigh-Bénard value for classical free-slip boundary conditions:

Rac = 27π4

4 ; kc = π√
2

Φ+ = Φ− = 10:

Φ+=Φ-=10
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▶ The flow lines start to cross the boundaries.
▶ The wavelength gets larger and the critical Rayleigh

number lower.

Φ+ = Φ− = 10−2:
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▶ Note the different horizontal and vertical scales here.
▶ The flow lines become vertical.
▶ The wavelength gets larger and the critical Rayleigh number lower.



Onset of convection with Φ+ = Φ−
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(Labrosse et al, JFM 2018)

At low Φ±, Rac gets close to but stays lower than that for pure translation.
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DNS using mantle convection code StagYY
Agrusta et al. (2019)
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Similarity with the translation mode

Rayleigh number, εNt
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▶ Φ ≤ 1: thermal structure in each vertically moving block similar to that of the translation mode.



Heat transfer and velocity

▶ Dashed lines: weakly non–linear predictions to first order
▶ Symbols: DNS results
▶ Solid lines: power law fits.

▶ Φ ≫ 1: classical Nu ∼ Ra1/3

▶ Φ ≤ 1 ⇒ Nu ∼ Ra/Φ
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Convective modes at onset as function of Φ− (Φ+ = ∞)

Φ− = 105:
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Φ− = 10:

Φ-=10
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▶ The flow lines start to cross the bottom boundary.
▶ The wavelength gets larger and the critical Rayleigh number lower.

Φ− = 10−2:
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▶ The wavelength is about twice that for classical boundary conditions
and the critical Rayleigh number about a fourth.

▶ Planform similar to the upper half of a classical convection model.



Linear stability
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Rac decreased by a factor ∼ 4, kc decreased by a factor ∼ 2



Thermal structure with one boundary with Φ = 0.1
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Heat transfer and mean temperature - high Rayleigh number
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▶ At high Ra, Nu ∼ CRa1/3.
▶ Coefficient C larger for small Φ ⇒ heat flow about twice larger for a given Ra.
▶ Consistent with a dynamics controlled by the only active boundary layer.
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Spherical shell geometry
Morison et al, submitted to Geophys. J. Int.

▶ An additional parameter: the aspect ratio γ = R−/R+

▶ Linear stability analysis.
▶ Application to the onset of convection during magma ocean crystallisation (Morison et al., 2019).
▶ Direct numerical simulations.

l = 1 l = 2 l = 3 l = 4



Linear Stability – Results

Φ+ = 104

Φ− = 104

▶ Rac = 687 and lc = 4
▶ Roughly square rolls
▶ Similar to classic non-permeable case



Linear Stability – Results

Φ+ = 104

Φ− = 10−2

▶ Rac = 188 and lc = 2
▶ Flow-through at the bottom

▶ Half cells
▶ Twice as wide

▶ Return current in the liquid ocean



Linear Stability – Results

Φ+ = 10−2

Φ− = 104

▶ Rac = 96 and lc = 1
▶ Quasi-translation mode
▶ Very little deformation in the solid



Linear Stability – Results

Φ+ = 10−2

Φ− = 10−2

▶ Rac = 0.11 and lc = 1
▶ Translation mode without deformation
▶ Only limited by phase change



Effect of γ – Classical case

0.3 0.4 0.5 0.6 0.7 0.8
750

1000

1250

1500

1750

2000

2250

2500

2750

Ra
n

Closed bottom, Closed top

1
2
3
4
5
6
7
8
9
10
11
12
13

   l



Effect of γ – Open at the bottom
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Competition between modes
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Effect of γ – Open at the top
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Effect of γ – Open at both boundaries
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Exploration of parameter space (γ, Φ±)
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Convection in high pressure ice layers
(Lebec et al., 2024, 2023)

Ice Ih
Liquid ocean
HP ice VI
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Phase change Φ
Free slip & Fixed T

Rigid / Free slip
Fixed heat flux q

d

R+

q

R-

Heat and salts transfer between the rocky core and the ocean? A key question for the habitability.
▶ How efficient is thermal convection in the HP ice layers?
▶ Do salts strongly influence the convective dynamics?



Thermal convection models

▶ Large radii ratio models: γ = 0.9; 0.95
▶ From slightly supercritical to large Rayleigh number (up to Ra = 108).
▶ Value of phase change number explored systematically.



Temperature and radial velocity profiles

0.00 0.02 0.04 0.06 0.08
Temperature

0.0

0.2

0.4

0.6

0.8

1.0

Ra
di

us

0 200 400 600 800
Radial velocity

Φ → ∞
Φ = 10−2

Raq / Rac = 105



Scaling for γ = 0.95
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▶ Modest effect on heat transfer but large effect on mass transfer across the top boundary.
▶ Φ ≲ 1 already in the low-Φ asymptotic regime.
▶ Exponents well understood with classical boundary layer model.



Application to Ganymede
Keeping the least constrained parameters apparent:
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αgqρd4
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▶ For most parameters
choices, bottom
temperature is close to
melting temperature of
HP ice.

▶ Computation of the
position of melting line
and melt fraction that
should be produced.



Effect of salts
(Lebec et al., 2024)

▶ Liquid water in contact with the rocky core ⇒ enrichment in “salts”.
▶ Salty water penetrates in the ice layer and freezes.
▶ Effects on convection in the ice layer?



Effect of salts - results
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▶ Additional parameters: Buoyancy number
Bsalts and partition coefficient K .

▶ For Bsalts ≲ 0.4, no strong effect of salts on
thermal convection.

▶ For Bsalts ≳ 0.6, development of stratification.
▶ limited untrainment of salts to the upper layer

such that effective B is small ⇒ heat and
mass transfer in the upper salt-poor layer
similar to cases without salts.

▶ Overall, efficient transfer of salts toward the
ocean.



Conclusions and outlook

▶ Convection in the solid is greatly influenced by the possibility of melting and freezing at either
boundary.

▶ When both boundaries have a phase change, a translation mode becomes possible and accessible
at very small Rayleigh number.

▶ Heat and mass tranfer is improved when a phase change boundary condition is considered.
▶ Application to the HP ice layers of large ocean worlds shows that heat and solute transfer between

the rocky core and the ocean can be efficient.



bonuses
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Phase change boundary conditions - 1
First developed for the inner core (Deguen, Alboussière, Cardin, et al)
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▶ At the boundary: continuity of the temperature:

T (h) = Tm(h),
▶ At the fixed computation boundary, this leads to
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h
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▶ Small topography: θ(1/2) = 0



Phase change boundary condition - 2

▶ Energy conservation across the boundary, with vϕ the freezing rate:

ρsLvϕ = JqK.

▶ Assume the convective heat flow on low–viscosity liquid side, f ∼ ρlcplulδTl , dominates.
Temperature variations are associated with topography so that:

f ∼ −ρlcplul

∣∣∣∣∂Tm

∂z

∣∣∣∣ h.

▶ This gives

ρsLvϕ ∼ −ρlcplul

∣∣∣∣∂Tm

∂z

∣∣∣∣ h ⇒ vϕ = h
τϕ

with τϕ the phase change time scale hence defined.



Phase change boundary condition - 3

▶ Continuity of the vertical stress:

−p + 2η
∂w
∂z + ∆ρgh = 0.

▶ Taking U as scale for the convective flow in the solid, this provides a scaling for the topography,
h ∼ ηU/∆ρgd or h = h′ηU/∆ρgd .

▶ The topography evolves by phase change and viscous stress in the solid:

∂h
∂t = uz + h

τϕ

▶ Considering τc the time scale for the change of convective flow, using U as velocity scale, this
equation is made dimensionless, with τη = η/∆ρgd :

ηU
∆ρgd

1
τc

∂h′

∂t ′ = Uu′
z + ηU

∆ρgd
h′

τϕ
⇒ τη

τc

∂h′

∂t ′ = u′
z + τη

τϕ
h′

▶ The time scale for the change of convective flow, τc ≫ τη, τϕ and we can neglect the
left–hand–side. In dimensional form, uz = −h/τϕ. Used in the stress–continuity equation to
eliminate h.



Phase change boundary conditions - 4

▶ The same can be done for the bottom boundary condition. Beware: the sign of ∆ρ is reversed.
▶ Dimensionless boundary condition for vertical velocity:

±Φ±w + 2 ∂w
∂z − p = 0, with Φ± = τϕ

τη
=

τϕ± |∆ρ±|gH
η

▶ Φ → ∞ ⇒ classical non-penetrative boundary condition (w = 0).
▶ Φ → 0 ⇒ permeable boundary condition (w ̸= 0).
▶ This boundary condition expresses the competition between the building of topography from

stress in the solid and its suppression by convection in the liquid.



Linear stability for deforming modes

Find the critical Rayleigh number and the associated flow for the onset of convection as function of Φ+

and Φ−:
▶ The conservation equations for mass, momentum and temperature are linearly developed around

the motionless conductive solution.
▶ A simple harmonic in horizontal direction:

θ(x , z) = Θ(z)eσt+ikx + c.c.; w(x , z) = W (z)eσt+ikx + c.c.; etc.

with the wavelength λ = 2π/k.
▶ For each k, we search for the Rayleigh number Ra(k) which makes ℜ(σ) = 0 (neutral stability).
▶ The minimum of Ra(k) gives the critical Rayleigh number Rac and the associated wavenumber kc .
▶ Full calculation performed using a Chebyshev-colocation method, behaviour for small Φ± obtained

analytically by polynomial expansion in z and Φ±.



Thermal convection with melting/freezing at the bottom
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▶ Critical Rayleigh number ∼ 4× smaller and critical wavelength ∼ 2× larger than classical
(Labrosse et al, JFM 2018).

▶ Finite amplitude solution:
▶ Only down-welling currents are focused (like for internally heated convection).
▶ Heat transfert much more efficient than with classical convection (Agrusta, et al, 2019).


	Introduction
	Flow equations and boundary conditions
	Convection in a plane layer
	Translation mode (k=0) for two phase change BCs
	Linear stability

	Non-linear solutions in cartesian geometry
	Spherical shell convection
	Linear stability

	Convection in high pressure ice layers of ocean worlds
	Appendix
	References


