6. その他の話題

データ同化法の比較(1)

	EnKF	4DVar
統計的推定法	線形最小分散推定	MAP推定
解析值	近似的な平均値	近似的なモード
時間発展	アンサンブル予報	決定論的予報
システム構築の手間	・サンプリングエラーや フィルタの発散などを抑 えるためのチューニング	 ・数値モデルと観測演算 子のアジョイントコードの 作成 ・平均的な予測誤差共分 散行列の設計
解析誤差共分散	自然に得られる別途、要計算	
非線形の影響	平均値でなくなる 最適値探索に困難	

カナダ気象局の全球モデル(400×200×58L):2007年2月

- EnKFと4DVarは同程度の精度。
- ・4DVarや3DVarにEnKFで計算したPfを使う(ハイブリッド)と精度向上。
- ・En4DVarは、EnKFや4DVarとほぼ同程度の精度。

Buehner et al. (2010)

データ同化法の課題

1. 非線形・非ガウス分布

- ・データ同化における非線形の強さは、
 観測データの時空間密度と精度に依存。
 ・非線形は非ガウス分布をもたらす。
- EnKFと粒子フィルタハイブリッド
- Long window 弱拘束4DVar

2. マルチスケール・データ同化

- ・大気海洋結合データ同化
- ・全球雲解像データ同化

H Miura et al. Science 2007;318:1763-1765

観測データの影響評価(1)

個々の観測データの予測値への影響を感度解析で評価する。

 \mathbf{x}^{f} :時刻0 の解析値からの予測値 \mathbf{x}^{g} :時刻-T の解析値からの予測値。時刻0 のデータ同化におけ る第一推定値(予測値)として使用。 $\Delta \mathbf{x}_{t}^{f}, \Delta \mathbf{x}_{t}^{g}$:時刻t におけるそれぞれの予測誤差 \mathbf{W} :予測値の二乗誤差に用いる重み行列(非負定値対称行列)

観測データの影響評価(2)

 $\mathbf{M}_{t}: 数値モデルの時刻0 から時刻^t への線形時間推進演算子$ $\mathbf{x}_{t}^{f} - \mathbf{x}_{t}^{g} \approx \mathbf{M}_{t} \left(\mathbf{x}_{0}^{f} - \mathbf{x}_{0}^{g} \right)$

 \mathbf{K}_{0} :時刻 0 におけるカルマンゲイン \mathbf{y}_{0} , \mathbf{R}_{0} :時刻 0 における観測データと観測誤差共分散行列 H_{0} , \mathbf{H}_{0} :時刻 0 における観測演算子とその線形演算子

$$\mathbf{x}_0^f = \mathbf{x}_0^a = \mathbf{x}_0^g + \mathbf{K}_0 \left(\mathbf{y}_0 - H_0(\mathbf{x}_0^g) \right)$$

これらを代入すると

$$\Delta \boldsymbol{e}_t \approx \boldsymbol{d}_0^{\mathrm{T}} \boldsymbol{K}_0^{\mathrm{T}} \boldsymbol{M}_t^{\mathrm{T}} \boldsymbol{W} \left(\Delta \boldsymbol{x}_t^g + \frac{1}{2} \boldsymbol{M}_t \boldsymbol{K}_0 \boldsymbol{d}_0 \right)$$

$$\mathbf{d}_0 \coloneqq \mathbf{y}_0 - H_0(\mathbf{x}_0^g)$$

したがって

$$\frac{\partial \Delta \boldsymbol{e}_t}{\partial \boldsymbol{d}_0} \approx \mathbf{K}_0^{\mathrm{T}} \mathbf{M}_t^{\mathrm{T}} \mathbf{W} \Big(\Delta \mathbf{x}_t^g + \mathbf{M}_t \mathbf{K}_0 \mathbf{d}_0 \Big)$$

Fig 4. Summed observation impact (δe_{24}^{30} , J kg⁻¹) for Southern and Northern Hemispheres, partitioned by instrument type. Results combine June and December 2002. Includes all observations assimilated in NAVDAS at 00UTC as in Fig. 3.

Ob type	Mean impact (per observation)	Number of observations	Variables
ATOVS	-0.9208	3 532 889	T (retrievals, super-ob, \sim 33 levels)
Rawinsonde	-3.3018	1 763 768	T, u , v , q (mandatory and significant levels), sea level pressure (assimilated as height)
Satellite wind	-2.7698	1 221 972	u, v (VIS, IR, WV, 500-800 hPa not assimilated)
Aircraft	-1.1612	1 203 855	T, u, v (flight level, ascent and descent)
Land surface	-2.3903	333 321	z, T, q
Ship and buoy	-6.2101	101 982	z, T, u, v, q (ship only)
Australian synthetic pressure	-31.12	7 601	Sea level pressure (assimilated as height)

Langland and baker (2004)

機動的観測(1)

- 1. 時刻 0 を初期値とする予測値(予測1)から、時刻*t* + *T* の予測 対象領域に対して、時刻 *t* における最適観測領域を推定。
- 2. 従来観測に加えて、時刻 t に最適観測領域で追加観測を実施。
- それらの観測データを同化して時刻^tの初期値を作成し、時刻 t+Tの予測を行う(予測2)。

FASTEX:前線と大西洋ストームトラック実験(1997年冬)

数値モデルによる右特異ベクトルの分布 (評価期間:2月17日18UTC~19日12UTC)

(Joly et al, 1999)

機動的観測(3)

追加したドロップゾンデ観測の予測精度への効果

(Shapiro and Thorpe, 2002)

追加観測データの効果(1)

時刻 *t* において

- $\mathbf{y}_{t}, \mathbf{R}_{t}$:追加観測データとその観測誤差共分散行列
- H_t, H_t : 追加観測データの観測演算子とその線形演算子
- $\widetilde{\mathbf{x}}_{t}^{a}, \widetilde{\mathbf{P}}_{t}^{a}$: 従来観測データのみを同化した場合の解析値と解析誤差共分行列
- \mathbf{x}_{t}^{a} , \mathbf{P}_{t}^{a} : 追加観測データも同化した場合の解析値と解析誤差共分散行列

観測データを逐次的に同化すると

$$\mathbf{x}_{t}^{a} = \widetilde{\mathbf{x}}_{t}^{a} + \widetilde{\mathbf{P}}_{t}^{a}\mathbf{H}_{t}^{T}\left(\mathbf{R}_{t} + \mathbf{H}_{t}\widetilde{\mathbf{P}}_{t}^{a}\mathbf{H}_{t}^{T}\right)^{-1}\left(\mathbf{y}_{t} - H_{t}(\widetilde{\mathbf{x}}_{t}^{a})\right)$$

 $\mathbf{P}_{t}^{a} = \widetilde{\mathbf{P}}_{t}^{a} - \widetilde{\mathbf{P}}_{t}^{a}\mathbf{H}_{t}^{T}\left(\mathbf{R}_{t} + \mathbf{H}_{t}\widetilde{\mathbf{P}}_{t}^{a}\mathbf{H}_{t}^{T}\right)^{-1}\mathbf{H}_{t}\widetilde{\mathbf{P}}_{t}^{a}$

追加観測データの効果(2)

時刻 t + T において \mathbf{M}_{t+T} :数値モデルの時刻t からt + T への線形時間推進演算子 \mathbf{Q}_{t+T} :数値モデルのランダム誤差の共分散行列 $\widetilde{\mathbf{P}}_{t+T}^{f}$:従来観測データのみを同化した場合の予測誤差共分散行列 \mathbf{P}_{t+T}^{f} :追加観測データも同化した場合の予測値と予測誤差共分散行列

その時刻の予測誤差共分散行列を計算すると

$$\begin{aligned} \mathbf{P}_{t+T}^{f} &\approx \mathbf{M}_{t+T} \mathbf{P}_{t}^{a} \mathbf{M}_{t+T}^{T} + \mathbf{Q}_{t+T} \\ &= \mathbf{M}_{t+T} \widetilde{\mathbf{P}}_{t}^{a} \mathbf{M}_{t+T}^{T} \\ &- \mathbf{M}_{t+T} \widetilde{\mathbf{P}}_{t}^{a} \mathbf{H}_{t}^{T} \left(\mathbf{R}_{t} + \mathbf{H}_{t} \widetilde{\mathbf{P}}_{t}^{a} \mathbf{H}_{t}^{T} \right)^{-1} \mathbf{H}_{t} \widetilde{\mathbf{P}}_{t}^{a} \mathbf{M}_{t+T}^{T} + \mathbf{Q}_{t+T} \\ &= \widetilde{\mathbf{P}}_{t+T}^{f} - \mathbf{M}_{t+T} \widetilde{\mathbf{P}}_{t}^{a} \mathbf{H}_{t}^{T} \left(\mathbf{R}_{t} + \mathbf{H}_{t} \widetilde{\mathbf{P}}_{t}^{a} \mathbf{H}_{t}^{T} \right)^{-1} \mathbf{H}_{t} \widetilde{\mathbf{P}}_{t}^{a} \mathbf{M}_{t+T}^{T} + \mathbf{Q}_{t+T} \end{aligned}$$

追加観測データの効果(3)

時刻 *t* + *T* において

- \mathbf{x}_{t+T}^{f} :追加観測データも同化した場合の予測値
- \mathbf{X}_{t+T} :状態変数の真値
- \widetilde{e}_{t+T}^{f} :従来観測データのみを同化した場合の二乗誤差の期待値 e_{t+T}^{f} :追加観測データも同化した場合の二乗誤差の期待値

$$e_{t+T} = \left\langle \left(\mathbf{x}_{t+T}^{f} - \mathbf{x}_{t+T} \right)^{\mathrm{T}} \mathbf{W} \left(\mathbf{x}_{t+T}^{f} - \mathbf{x}_{t+T} \right) \right\rangle$$

$$= \left\langle \mathrm{Tr} \left[\left(\mathbf{x}_{t+T}^{f} - \mathbf{x}_{t+T} \right)^{\mathrm{T}} \mathbf{W} \left(\mathbf{x}_{t+T}^{f} - \mathbf{x}_{t+T} \right) \right] \right\rangle$$

$$= \mathrm{Tr} \left[\mathbf{W} \left\langle \left(\mathbf{x}_{t+T}^{f} - \mathbf{x}_{t+T} \right) \left(\mathbf{x}_{t+T}^{f} - \mathbf{x}_{t+T} \right)^{\mathrm{T}} \right\rangle \right]$$

$$= \mathrm{Tr} \left[\mathbf{W} \mathbf{P}_{t+T}^{f} \right]$$

$$\approx \mathrm{Tr} \left[\mathbf{W} \mathbf{P}_{t+T}^{f} \right] - \mathrm{Tr} \left[\mathbf{W} \mathbf{M}_{t+T} \mathbf{P}_{t}^{a} \mathbf{H}_{t}^{\mathrm{T}} \left(\mathbf{R}_{t} + \mathbf{H}_{t} \mathbf{P}_{t}^{a} \mathbf{H}_{t}^{\mathrm{T}} \right)^{-1} \mathbf{H}_{t} \mathbf{P}_{t}^{a} \mathbf{M}_{t+T}^{\mathrm{T}} \right]$$

$$\therefore e_{t+T} \approx \widetilde{e}_{t+T} - \mathrm{Tr} \left[\mathbf{H}_{t} \mathbf{P}_{t}^{a} \mathbf{M}_{t+T}^{\mathrm{T}} \mathbf{W} \mathbf{M}_{t+T} \mathbf{P}_{t}^{a} \mathbf{H}_{t}^{\mathrm{T}} \left(\mathbf{R}_{t} + \mathbf{H}_{t} \mathbf{P}_{t}^{a} \mathbf{H}_{t}^{\mathrm{T}} \right)^{-1} \right]$$

$$\equiv \partial_{t} \mathbf{T} \mathbf{M} \mathbf{W} [\mathbf{L} \mathbf{L}_{t}] = \mathbf{R} \mathbf{H} \mathbf{H} \mathbf{E} \mathbf{E} \mathbf{F} \mathbf{N} \mathbf{M} \mathbf{M}_{t+T} \mathbf{H} \mathbf{H} \mathbf{H}_{t} \mathbf{H}_{t} \mathbf{H}_{t} \mathbf{H}_{t} \mathbf{H}_{t} \mathbf{H}_{t}^{\mathrm{T}} \right)^{-1} \mathbf{M} \mathbf{H}_{t} \mathbf{H}_{t}^{\mathrm{T}} \mathbf{H}_{t}^{\mathrm{T}} \right]$$

追加観測データの効果(4)

簡単のため、追加観測データば 番目の状態変数に対する1個だけとする。 $\mathbf{H}_{t} = (0 \cdots 0 1 0 \cdots 0), \qquad \mathbf{R} = (\sigma^{o})^{2}$ これらを代入すると^{*i*} $e_{t+T} \approx \widetilde{e}_{t+T} - \frac{(\widetilde{\mathbf{P}}_{t}^{a})_{i}^{T} \mathbf{M}_{t+T}^{T} \mathbf{W} \mathbf{M}_{t+T} (\widetilde{\mathbf{P}}_{t}^{a})_{i}}{(\widetilde{\mathbf{P}}_{t}^{a})_{ii} + (\sigma^{o})^{2}}$

非負定値対称行列 $\mathbf{M}_{t+T}^{T}\mathbf{W}\mathbf{M}_{t+T}$ の固有値問題を解く。

 $\mathbf{M}_{t+T}^{T}\mathbf{W}\mathbf{M}_{t+T}\mathbf{u}_{j} = \lambda_{j}\mathbf{u}_{j}$

固有値 λ_j は摂動 \mathbf{u}_j の増幅率を与える。この行列を固有値分解すれば

$$e_{t+T} \approx \widetilde{e}_{t+T} - \frac{\sum_{j=1}^{n} \lambda_j \left[\mathbf{u}_j^{\mathrm{T}} \left(\widetilde{\mathbf{P}}_t^{a} \right)_i \right]^2}{\left(\widetilde{\mathbf{P}}_t^{a} \right)_{ii} + \left(\sigma^{o} \right)^2}$$

最適観測領域は、固有値の大きな固有ベクトル(右特異ベクトル)の成 分の絶対値が大きく、かつ解析誤差が大きな領域とすればよい。

北半球2層準地衡風モデルによる特異ベクトルの計算例

右特異ベクトル

左特異ベクトル

T = 0 h

T = 0 h

T=48h (**等値線間隔10倍**)