木星大気の雲対流

杉山耕一朗¹⁾, 中島健介²⁾, 小高正嗣³⁾, 倉本圭^{3,6)}, 石渡正樹^{3,6)}, 西澤誠也⁵⁾, 高橋芳幸^{5,6)}, 林祥介^{5,6)}

1) JAXA 宇宙研, 2) 九大理, 3)北大理, 4)神戸大理, 5) 理研, 6) CPS

Center for Planetary Science

- ・雲で覆われた惑星
 - 模様の変動

- ・背の高い対流雲と思わ れる雲が存在
 - 雷発光を伴う
 - 時間・空間スケール
 - ・平均寿命 3.5 日
 - 1000~4000 km

ガリレオ探査機が大赤斑の北西で観測した対 流雲の擬似カラー画像.対流雲のスケールは 約 1000 km (Vasavada and Showman, 2005)

・縞で観測される

・ 鉛直一次元の熱平衡計算(ECCM)によって推定 上昇域ではまだしも, 上昇域・下降域も含めた大気全体 の平均構造は, ECCMの結果と一致する保証は無い

ガリレオプローブの観測

- ・ 雲のない領域に落下 – ホットスポット
- ・大気は非常に乾燥
- 代表性には疑問が持たれている

ミリ波・サブミリ波観測

- 0.6 bar NH₃ 混合比の平均値は太陽組成 の半分以下
 - 熱平衡で説明するのは難しい.
 1 つの H₂S が 10 個の NH₃を 消費するような化学反応?

雲対流計算の必要性

- ・探査機の観測を経た現在でも, 木星大気の<mark>平均的な</mark>大 気構造はよくわかっていない
- ・本来, 平均的な大気構造は, <mark>放射対流平衡状態</mark>として 決まるものであり, 熱平衡計算で良いはずはない
- ・本研究では, 流体計算を行い, 流れ場とそれによる 雲・凝結性成分気体の鉛直分布を得る.
 - 大気の運動を考慮することで, 平均的大気構造が鉛直 一次元の熱平衡計算(ECCM)の結果からどの程度変化 し得るか把握する.
 - 木星大気の不確定なパラメタに対する雲対流構造の依存性を把握する.

- ・1つの雲の生成消滅のシミュレーション
 - Yair et al. (1992, 1995)
 - Hueso and Sanchez-Lavega (2000)
- 多数の雲の生成消滅が繰り返された結果として
 決まる大気構造
 - Nakajima et al. (2000)
 - H₂O の凝結のみ考慮
 - Sugiyama et al. (2009, 2011, 2013 submitted)
 - ・ H₂O と NH₃ の凝結, NH₄SH 生成反応を考慮

- ・ 雲対流計算を実行し, 多数の雲の生成消滅が繰り返さ れた結果として決まる大気構造を調べる.
 - 大気の運動を考慮することで, 平均的大気構造が鉛直 一次元の熱平衡計算(ECCM)の結果からどの程度変化 し得るか把握する.
- ・木星大気の不確定なパラメタに対する雲対流構造の 応答を調べる。
 - 雲微物理過程の雲から雨への変換の時定数を桁で変化 させた計算
 - 凝結性成分の存在度を太陽系形成論から予想される範 囲で変化させた計算

- ・水平鉛直 2 次元の準圧縮方程式系 (Klemp and Wilhelmson, 1978)
 - 運動方程式,連続の式,熱の式,物質の保存式
 - ・熱の式: 潜熱と反応熱を考慮
 - ・物質の保存式:3 種類の凝結性成分と3 種類の凝結物
- 放射過程
 - 放射は陽に解かず,水平一様かつ時間変化しない強制を与 える.
- · 雲微物理過程
 - 暖かい雨のパラメタリゼーション(Kessler, 1969).

モデルの定式化

状態方程式

$$\rho = \frac{p}{R_d T} \left(\frac{1/M_d}{1/M_d + \sum q_v/M_v} \right) \left(1 + \sum q_v + \sum q_c + \sum q_r \right) = \frac{p_0 \pi^{c_{vd}/R_d}}{R_d \theta_v} \quad \left(\theta_v = \frac{\theta}{\left(\frac{1/M_d}{1/M_d + \sum q_v/M_v} \right) \left(1 + \sum q_v + \sum q_c + \sum q_r \right)} \right)$$

・ 運動方程式

$$\frac{\partial u}{\partial t} = -\left(u\frac{\partial u}{\partial x} + w\frac{\partial u}{\partial z}\right) - c_{p_d}\bar{\theta_v}\frac{\partial \pi}{\partial x} + Turb.u$$

$$\frac{\partial w}{\partial t} = -\left(u\frac{\partial u}{\partial x} + w\frac{\partial u}{\partial z}\right) - c_{p_d}\bar{\theta_v}\frac{\partial \pi}{\partial z} + Turb.w + g\left(\frac{\theta}{\bar{\theta}} + \frac{\sum q_v/M_v}{1/M_d + \sum \bar{q_v}/M_v} - \frac{\sum q_v + \sum q_c + \sum q_r}{1 + \sum \bar{q_v}}\right)$$
ED

$$\begin{aligned} \frac{\partial \pi}{\partial t} &= -\frac{\overline{C_s}^2}{c_{pd}\bar{\rho}\bar{\theta_v}^2} \frac{\partial}{\partial x_j} (\bar{\rho}\bar{\theta_v}u_j) \\ \bullet \quad \mathbf{\hat{MOT}} \\ \frac{\partial \theta}{\partial t} &= -\left(u\frac{\partial \theta}{\partial x} + w\frac{\partial \theta}{\partial z}\right) - w\frac{\partial \bar{\theta}}{\partial x} + \frac{L}{c_{pd}\bar{\pi}} \left(CN_{vc} - EV_{cv} - EV_{rv}\right) \\ &+ \frac{1}{\bar{\pi}} \left(Q_{rad} + Q_{dis}\right) + Turb.\bar{\theta} + Turb.\theta \end{aligned}$$

変数		上付き添え字
p: 圧力	R: 気体定数	-: 平均成分
π: 無次元圧力	M: 分子量	
T: 温度	c_p : 比熱	
θ:温位	C_s : 音速	下付き添え字
θ_v : 仮温位	V _l : 雨の落下速度	d: 乾燥成分
u: 水平風速	L: 潜熱	v: 凝縮成分気体
w: 鉛直風速	Turb: 乱流拡散項	<i>c</i> : <u>=</u>
q: 混合比	Q_{rad} :放射加熱項	r: 🔃
ρ : 密度	Q_{dis} : 散逸加熱項	

・凝縮性成分の保存式

 $\begin{aligned} \frac{\partial q_v}{\partial t} &= -\left(u\frac{\partial q_v}{\partial x} + w\frac{\partial q_v}{\partial z}\right) - w\frac{\partial \bar{q_v}}{\partial x} - (CN_{vc} - EV_{cv} - EV_{rv}) + Turb.q_v + Turb.\bar{q_v}, \\ \frac{\partial q_c}{\partial t} &= -\left(u\frac{\partial q_c}{\partial x} + w\frac{\partial q_c}{\partial z}\right) + (CN_{vc} - EV_{cv} - CN_{cr} - CL_{cr}) + Turb.q_c, \\ \frac{\partial q_r}{\partial t} &= -\left(u\frac{\partial q_c}{\partial x} + w\frac{\partial q_c}{\partial z}\right) + (CN_{cr} + CL_{cr} - EV_{rv}) + \frac{\partial}{\partial z}(\bar{\rho}V_tq_r) + Turb.q_r\end{aligned}$

系の設定

標準実験 (CTRL) の結果

対流活動の時間変化

Center for Planetary Science

- ・対流活動は間欠的.
 - 活発期(A): 積雲の発達. 雲層上部で 3 種類の雲の混合.
 - 静穏期(Q): 対流活動が弱く, 複数の凝結物の鉛直混合はあま り生じない.
 - 活発期では,積雲が続けざまに生じるため,温度が上昇.

平均的大気構造

- ・積雲に伴う鉛直輸送によって, 鉛直 1 次元の熱平衡計算 の結果から大きく変化
 - H_2O と NH_4SH 雲粒は NH_3 凝結高度の上空にまで上昇
 - 凝結性成分気体は,それぞれの凝結高度ではなくH₂O 凝結高度 から高度と共に減少を始める.

- ・境界として作用する理由
 - – 凝結が生じると、乾燥成分 (H₂, He) に比べて相対的に 重い凝結性成分 (H₂O, NH₃, H₂S) が気塊から抜ける。
 - 凝結高度付近が安定成層

パラメタ実験

	雲から雨への変換の時定数 (100 sec)			
熱強制 (-0.01 K/day)		1倍	10倍	100倍
	1倍	\bigcirc	\bigcirc	\bigcirc

	凝結成分の存在度 (solar)					
		0.1倍	0.3倍	1.0倍	3.0倍	10.0倍
熱強制	1倍			\bigcirc	CTRL	
(-0.01 K/day)	10倍	×	×	\bigcirc	\bigcirc	\bigcirc
	100倍			×		

雲から雨への変換の時定数

Center for Planetary Science

- ・大気構造は, 凝結物の分布を除けば, ⁽ 変換の時定数に強く依存しない.
- ・領域全体が曇る理由
 - 鉛直移流のタイムスケール < 変換の時定数
 - $\tau_a^{\text{active}} = 80,000/50 = 1,600 \text{ sec}$
 - $\tau_a^{\text{quiet}} = 40,000/10 = 4,000 \text{ sec}$
 - $\tau = 10,000 \text{ sec}$ (C100)

雲から雨への変換の時定数

- Center for Planetary Science
- ・平均的大気構造も,凝結物の分布を除けば,変換の時定数 に強く依存しない.

凝結性成分

- ・ *Q* = -0.1 K/day であることに注 意.
- ・間欠性の周期は凝結性成分の存在 度に概ね比例.
 - 活発期の凝結物混合比の最大値, 温度変化分も概ね比例.
- ・R10S01 では, H₂O 凝結高度は 弱い「境界」

- ・凝結物混合比の平均値はほぼ同じ
 - 活発期での平均混合比および間欠性の周期が凝結成分存在 度に比例するため。
- ・凝結性成分が多いほど,各凝結高度が「境界」として働き 易い.

議論: 間欠性のメカニズム

活発期の開始:雨がトリガー

Center for

活発期の終了の定量的考察

- ・ 終了の条件: 雲仕事関数 A がほぼゼロ
 - H₂O 凝結高度付近で受ける負の浮力による仕事と,
 その上空で受ける正の浮力による仕事が釣り合う.
 - 負の浮力: 凝結成分気体の分子量効果・凝結物の荷重 効果.

間欠性

- 上層から冷やされるため、活発期の直前 では、下層の H₂O に富む気塊に対して、 大きな潜在不安定.
- 雨の落下が不安定を解消するトリガー.
 H₂O 凝結高度が安定成層でも, 雲が発生.
- 不安定が解消されるまで (A = 0), 次々
 と積雲が発生し続ける.
- ・ 結果として, 雲層の平均温度は上昇
 - 温度変化: ΔT = 0.25 K (in ~ 2 days) vs 熱強制: Q = 0.01 K/day
- ・ そのような大気構造になるのは, 雲底下 の大気が膨大, かつ, 上から冷やされる 、系であるため.

間欠性の周期

 ・ 潜熱による温度上昇幅 ΔTを, 放射冷却 Q_{rad} で緩和 するのに必要な時間として見積もれる

周期 $\approx \frac{\int_{p_{cloud}}^{p_{top}} c_p \Delta T/g \, dp}{\int_{p_{rad}}^{p_{top}} c_p Q_{rad}/g \, dp} \approx \frac{\Delta T}{Q_{rad}} \frac{p_{cloud}}{p_{rad}} \propto 凝結成分存在度$: 温度上昇 \propto 凝結成分の存在度 C_p : 比熱, g: 重力加速度, p: E

Table 2: Summary of the period of cloud activity

Case	Averaged pe-	H ₂ O cloud	Mean tem-	Estimated
	riod of inter-	base (Pa)	perature	period based
	mittency		deviation ΔT	on Eq. ??
			(K)	(day)
CTRL	38	3.9	0.24	47
C10	51	3.9	0.3	59
C100	62	3.9	0.4	78
R3	18	3.9	0.28	18
R10	8.4	3.9	0.39	7.6
R10S3	19	4.7	1.0	24
R10S10	131	5.8	4.9	142

C_p: 比熱, g: 重力加速度, *p*: 圧力, p_{top}: 対流圏界面, p_{cloud}: H₂O 雲底高度, p_{rad}: 放射強制の効く下端 圧力

観測への示唆&まとめ

- ・木星大気の「平均的」な大気構造を調べることを目 的とした、長時間の雲対流の数値計算.
- H₂O 凝結高度から対流圏界面にまで達する強い積雲
 が間欠的に発生する
 - 間欠性の周期は概ね凝結性成分の存在度に比例.
- ・ 強い積雲に伴う鉛直輸送によって, 雲と凝結成分気体 の鉛直分布は鉛直一次元の熱平衡計算の結果から変 化しうる.
 - 凝結成分気体の分布はそれぞれの凝結高度ではなく H₂O 凝結高度から高度と共に減少
 - H_2O と NH_4SH の雲粒が対流圏界面まで上昇

- NH₃ 蒸気の鉛直分布は従来の電波観測で得られた分布 と整合的
 - 観測: NH₃ 凝結高度よりも深い領域の 0.6 bar bar において NH₃ 混合比の平均値が太陽組成の約半分
 - 雲層内で NH₃ 蒸気と凝結性成分気体に乏しい気体の鉛 直混合によって説明可能.
- ・H₂O存在度はガリレオプローブの結果と整合的でない
 - 大気深部まで非常に少ないというガリレオプローブの観 測結果は再現されなかった。
 - ガリレオの観測した乾燥した状態を説明するためには、 雲対流以外の効果 (例えば全球規模の擾乱)を考慮する 必要があるだろう。

まとめ

- ・ 積雲が間欠的に生じるメカニズム
 - 上から冷やされる系
 - 活発期の開始時:潜在不安定 & H₂O 凝結高度より下方への雨の落下がトリガー
 - 活発期の終了時: 雲仕事関数 A がほぼゼロ
 - 活発期の雲が続けざまに生じる結果,雲層の温度は上昇.
 温度上昇分を熱強制で緩和すると,次の活発期へ.
- ・現実の木星・土星では、積雲活動に関係すると考えられている数年から数十年スケールの変動が見られる、このような現象のメカニズムを考察する手がかりになるかもしれない。

