Resolution dependence of deep convections in a global simulation from over 10-kilometer to sub-kilometer grid spacing

¹Kajikawa, Y., ¹Y. Miyamoto, ¹R. Yoshida, ¹T. Yamaura, ¹H. Yashiro, and ^{1,2}H. Tomita

> ¹RIKEN Advanced Institute for Computational Science, ²Japan Agency for Marine-Earth Science and Technology,

From the **demonstration** to **scientific knowledge**

Earth Simulator Athena Cray XT-4 2002 2005 (\mathbf{h}) Case study (Miura et al 2007)

Several weeks and month Athena Project: (Sato et al 2012) **N**ow, we can run such simulations of several decades with "K", and make a breakthrough from the case study

Related Papers

 Kodama, C., and co-authors, 2015: 20-year climatology of a NICAM AMIP-type simulation, J. Meteor. Soc. Japan, 93, doi:10.2151/jms 2015-024

- Miyakawa, T., and co-authors, 2014: Madden-Julian Oscillation prediction skill of a new-generation global model demonstrated using a supercomputer. *Nature Commun.*, 5, 3769, doi:10.1038/ Ncomms4769.
- Nakano, M., M. Sawada, T. Nasuno, and M. Satoh, 2015: Intraseasonal variability and tropical cyclogenesis in the western North Pacific simulated by a global nonhydrostatic atmospheric model. *Geophys. Res. Lett.*, **42**, doi:10.1002/2014GL062479.
- Kajikawa. Y., T. Yamaura, H. Tomita and M. Satoh, 2015: Impact of tropical disturbance on the Indian summer monsoon onset simulated by global cloud-system-resolving model, SOLA, 11, 80-84, doi:10.2151/ sola.2015-020

Grand Challenge project:

Today's talk

Toward super **high-resolution** global atmospheric simulation by the NICAM using the K-computer.

- Miyamoto. Y., Y. Kajikawa, R. Yoshida, H. Yashiro, T. Yamaura and H. Tomita, 2013: Deep moist atmospheric convection in a sub-kilometer global simulation, *Geophys. Res. Lett.*, doi:10.1002/grl.50944.
- Miyamoto. Y., R. Yoshida, T. Yamaura, H. Yashiro, H. Tomita and and <u>Y. Kajikawa</u>, 2015: Does convection vary in different cloudy disturbances? *Atm. Sci. Lett.*, DOI: 10.1002/asl2.558
- <u>Kajikawa. Y., Y. Miyamoto</u>, R. Yoshida, H. Yashiro, T. Yamaura and H. Tomita, 2015: Resolution Dependencies of Deep Moist Convections in the Sub-kilometer Global Simulation, *Prog. Earth Planet. Sci., in revision*

Introduction and purpose of this study

Convection

BSISO, TC etc.

- Element of cloudy disturbances
- Transport heat and moisture
- Horizontal scale $\sim 10^{0}$ km

[Issue] how to solve in **global models** $(Dx \sim 10^1 - 10^2 \text{ km})$

Cumulus parameterization

Byers and Braham (1949)

After 2000s ...

- (1) Model development & (2) enhancement of computer power
- ightarrow Dx \sim 10⁰ km (clouds are explicitly solved in global models)
- → Still coarser or comparable to obs.

Regional model (Weismann et al., 1997) : change around $\Delta x \le 4$ km

Question 1

What is the statistical features of deep convections in a global model and their resolution dependence?

Grid refinement Experiment by NICAM & K

model	NICAM (Tomita and Satoh 2004, Satoh et al. 2008)		
Initial state	3-day integrated results of 1-step coarser resolution		
SST	JMA GPV+ nudging (Reynolds weekly SST)		
land	Model adjusted produced by 5 year run		
Cloud physics	NSW6 (Tomita 2008)		
Boundary layer turbulence	MYNN (Nakanishi and Niino 2004, Noda et al. 2008)		
Surface flux	Louis (1979)		
Long and short-wave radiation	MSTRNX (Sekiguchi and Nakajima 2008)		
Cumulus parameterization			

Experiments	horizontal mesh size (km)			initial time (UTC)	period	initial data
$\overline{\Delta 14.0}$		14.0		2012082500	12 hours	$\Delta 30.0$
$\Delta 7.0$		7.0		2012082500	12 hours	$\Delta 14.0$
$\Delta 3.5$		3.5	Δx	2012082500	12 hours	$\Delta 7.0$
$\Delta 1.7$		1.7		2012082500	12 hours	$\Delta 3.5$
$\Delta 0.8$		0.8		2012082500	12 hours	$\Delta 3.5$

Successfully conducted the GL13(870m) simulation

Comparison with the previous model resolution

GL13 (0.87km) with K computer

Each cumulus in the tropical cyclone are expressed in detail.

Previous model resolution (3.5km)

How to detect a convection core

- a) ISCCP convective grids (
)
- b) Find grids (●) at which all the surrounding 8 grids satisfy the ISCCP condition
- c) Estimate horizontal gradient of vertical velocity averaged vertically in the troposphere
- d) Convective grids (•) :=
 where vertically aved w
 is larger than those at
 surrounding 8 grids

Detected Convection cores

- Convection cores are reasonably detected around low OLR.
- High potential temperature deviations appear around strong w region.
- Convection features capture the observed structure .

Essential change of convection statistics

Figure 3. Radius height cross sections for composites of vertical velocity *w* for all detected convections in each simulation. The horizontal axis is the number of horizontal grids.

- Convection is represented at <u>1 grid</u>
- Little dependence on resolution

- Convection is represented at <u>multiple grids</u>
- Intensify w/ resolution

Essential change of convection statistics

Figure 4. Resolution dependencies of convective features: (a) number of convective features and (b) grid distance to the nearest convective feature. The thin dashed line in (Figure 4a) indicates a log Δ^4 crossing at the point of $\Delta 14$ as a reference.

The convection structure, number of convective cells, and distance to the nearest convective cell dramatically changed around **2.0km**

Question 2

Is there difference in convection structure and intensity in could disturbances, such as MJO, TC, or Midlatitude front?

How to detect cloud disturbances

Madden Julian Oscillation (MJO)

- Temporally filtered re-analysis data (Kikuchi et al. 2012)
- OLR > 10 W m⁻²
- -20 < lat < 20</p>
- 30 < lon < 240

MiD-latitude Low (MDL)

- Coarsened to 2.5 x 2.5 grid
- SLP mean SLP surrounding 1000 km < 10 hPa
- SLP < 1000 hPa
- 40 < lat < 70
- Region inside 1000 km radius

Tropical Cyclone (TC)

- SLP mean SLP surrounding 3° < -1 hPa
- Vertically averaged MWS > 5 m s-1
- vertically averaged vertical relative vorticity | > 10-5 s-1
- Region inside the 600 km radius

Front (FRT)

- Coarsened to 2.5 x 2.5 grid
- Thermal Front Parameter (TFP) > 10⁻¹⁰ K m-2
- OLR < 200 W m⁻²
- Longest oblique side of enclosed area satisfying the 2 conditions >= 10 deg

Convection structure in each disturbance

Environmental field of convections

MJO: Large CAPE
Weak convergence
TC: Strong convergence
Small CAPE
MDL & FRT:
Strong vertical wind shear
Small CAPE

In what area does convection make the largest contribution to the global mean?

(What environmental condition is effective in producing the diversity of convection properties)

Resolution Dependence in the Global Field

Resolution Dependence in the Global Field

Zonal mean OLR and the # of detected convections

- 1. Overall, OLR in $\Delta 0.87$ and $\Delta 1.7$ is higher than in other resolution experiments.
- 2. OLR in each simulation is consistent with observation, except for the area between 30S and 10S; OLR in the simulation is about 30 W m⁻² larger than observations in peak. This strongly affects the positive bias of the global mean OLR.

Area of each ISCCP cloud type over the globe

- 1. Cb decreased & CLR increased between $\Delta 3.5$ and $\Delta 1.7$
- 2. Ci also increased

[Mid-Latitude] the increase CLR [Tropics] canceled out between the increased CLR and Cir with Cb

 The area of low cloud (e.g., Stratocumulus) gradually decreases with higher resolution, especially from Δ14 and Δ3.5.

Resolution dependence of the precipitation rate

- 1. Strong precipitation is shown in $\Delta 1.7$ (around 50mm h-1) and $\Delta 0.87$ (more than 100mm h-1).
- 2. The ratio of strong rainfall, which is in excess of 20 mm h-1, is drastically increased from $\Delta 3.5$ to $\Delta 1.7$.

Resolution Dependence on Convection Properties

Land and Ocean Difference

27

Latitudal difference

Different Cloudy Disturbance

Summary I

- Global sub-kilometer simulation has conducted.
- Significant change of Convection features (structure, number, distance) significantly between the 3.5-km and 1.7-km resolutions →less than 2-3km to resolve convection
- Convection differences in various atmospheric cloudy disturbances (MJO, TC, MDL, and FRT) in terms of cloud top height, upward motion, precipitation.
- Global mean: Precipitation etc ... conserved in diff resolution.
 Ratio of the cloud type is different. Cb decrease, CLR increase,
 Low cloud decrease ...
- Diversity of convection properties: Tropics large resolution dependence, mid-high lat smaller. No significant diff between land and Ocean. Essential change around 1km in cloudy disturbances.

We found a difference in resolution dependency in the simulated convection property.

It is important that the convections, even in cloudy disturbances, show a convergent trend for the number and are resolved not by a single grid, but by multiple grids <u>between $\Delta 1.7$ and $\Delta 0.87$, at</u> <u>least</u>, despite the existence of the above difference.

[Future] Necessary of the examination of the interactions between convection and disturbances based on longer period datasets with a spatial resolution high enough to resolve it.