Magnetic Rossby waves in the Earth's core

Kumiko Hori ${ }^{1,2}$, Chris Jones ${ }^{1}$, Rob Teed ${ }^{3}$, Steve Tobias ${ }^{1}$
${ }^{1)}$ Department of Applied Mathematics, University of Leeds.
${ }^{2)}$ Graduate School of System Informatics, Kobe University, Japan.
${ }^{3)}$ School of Mathematics and Statistics, University of Glasgow.

UNIVERSITY OF LEEDS

Waves in the Earth's fluid core

Waves provide us with information about the 'invisible' system

- torsional Alfven waves (e.g. Braginsky 1967, Zatman \& Bloxham 1997)
- axisymmetric, travelling in radius s
- ~6 yrs traveltime: Bs >~ 2 mT (Gillet et al. 2010, 2015)
- axisymmetric MAC oscillations (e.g. Braginsky 1993)
- in a thin, stably stratified layer at the top of the core?
- ~60 yrs geomagnetic variation: H~140 km? (Buffett 2014)
- slow magnetic Rossby waves (e.g. Hide 1966, Acheson 1978)
- nonaxisymmetric, travelling in azimuth ϕ
- ~ 300 yrs westward drift: $\mathrm{B} \phi \sim 10 \mathrm{mT}$? (Hori et al. 2015)
- (fast magnetic) Rossby waves in a thin stable layer (e.g. Braginsky 1984)
- ~ 6 yrs westward drift? (Chulliat et al. 2015)
- in the solar tachocline also?: ~ 2 yrs westward? (McIntosh et al. 2017)

An axisymmetric mode: torsional Alfven waves

- A special class of Alfven waves
(Braginsky 1970; also Roberts \& Aurnou 2012)
- the azimuthal momentum eq on cylindrical surfaces in the magnetostrophic balance gives a steady state (Taylor 1963)
- cylindrical perturbations on the state

$$
\frac{\partial^{2}}{\partial t^{2}} \frac{\left\langle\overline{u_{\phi}^{\prime}}\right\rangle}{s}=\frac{1}{s^{3} h\langle\bar{\rho}\rangle} \frac{\partial}{\partial s}\left(s^{3} h\langle\bar{\rho}\rangle U_{\mathrm{A}}^{2} \frac{\partial}{\partial s} \frac{\left\langle\overline{u_{\phi}^{\prime}}\right\rangle}{s}\right)
$$

» travel in radius s with the the z-mean Alfven speed $U_{A}=\left(\left\langle B_{s}^{2}\right\rangle /\langle\rho\rangle \mu_{0}\right)^{1 / 2}$

(b)

An axisymmetric mode: torsional Alfven waves

- A special class of Alfven waves
(Braginsky 1970; also Roberts \& Aurnou 2012) :
- the azimuthal momentum eq on cylindrical surfaces in the magnetostrophic balance gives a steady state (Taylor 1963)
- cylindrical perturbations on the state

$$
\frac{\partial^{2}}{\partial t^{2}} \frac{\left\langle\overline{u_{\phi}^{\prime}}\right\rangle}{s}=\frac{1}{s^{3} h\langle\bar{\rho}\rangle} \frac{\partial}{\partial s}\left(s^{3} h\langle\bar{\rho}\rangle U_{\mathrm{A}}^{2} \frac{\partial}{\partial s} \frac{\left\langle\overline{u_{\phi}^{\prime}}\right\rangle}{s}\right)
$$

» travel in radius s with the the z-mean Alfven speed $U_{A}=\left(\left\langle B_{s}^{2}\right\rangle /\langle\rho\rangle \mu_{0}\right)^{1 / 2}$

- Data:
- probably responsible for 6-7 year variations » can account for the 6 year LOD change
- the observed wave speed is used to infer the field strength within the core

```
" \(\left\langle\text { Bs }^{2}\right\rangle^{1 / 2} \geq 2 \mathrm{mT}\)
```

» better fits with the scaling law
U_{ϕ} in a core flow model inverted from
the geomagnetic variation gufm1

Nonaxisymmetric waves in the core?

- Possibly related to the geomagnetic westward drift
- the nonaxisymmetric part of the field moving in azimuth
- significant in the Atlantic hemisphere: period $\sim 3^{*} 10^{2}$ yrs
- probably a mixture of flow advection (Bullard+1950) and wave propagation (Hide 1966)
- \rightarrow How can we separate the signal due to waves?

Nonaxisymmetric part of Br at the surface of the core at the equator $/ 40^{\circ} \mathrm{S}$ (gufm1: Finlay \& Jackson 2003)

Magnetic Rossby waves

- Key ingredients (Hide 1966; Acheson 1978; also Hori et al. 2015):
- axial vorticity equation in a quasi-magnetostrophic balance ($\Lambda=\mathrm{O}(1)$; Ro, $\mathrm{E} \ll 1$)

$$
\rho \frac{\partial \xi_{z}^{\prime}}{\partial t}-2 \rho \Omega \frac{\partial u_{z}^{\prime}}{\partial z}=\hat{\boldsymbol{e}}_{z} \cdot \nabla \times\left(\boldsymbol{j}^{\prime} \times \widetilde{\boldsymbol{B}}\right)
$$

coupled with the induction equation

$$
\frac{\partial \boldsymbol{b}^{\prime}}{\partial t}=\widetilde{\boldsymbol{B}} \cdot \nabla \boldsymbol{u}^{\prime}
$$

- spherical geometry (topographic β-effect)
- almost independent of z (quasi-geostrophic)
- azimuthal length scales shorter than radial ones
- Dispersion relations about a mean flow: with a form of $\mathrm{e}^{\mathrm{i}(m \phi-\omega t)}$

$$
\hat{\omega}_{ \pm}=\hat{\omega}_{R}\left[\frac{1}{2} \pm \frac{1}{2} \sqrt{1+4 \frac{\hat{\omega}_{M}^{2}}{\hat{\omega}_{R}^{2}}}\right]
$$

a QG eigenfunction for $\mathrm{B}_{\phi}=\mathrm{B}_{0} \mathrm{~s} \mathrm{e}_{\phi}$ in a meridional section (after Malkus 1967)
where Rossby and Alfven frequencies

$$
\hat{\omega}_{R}=\frac{2 \Omega s^{2}}{\left(r_{o}^{2}-s^{2}\right) m} \quad \hat{\omega}_{M}^{2}=\frac{m^{2}}{\rho \mu_{0}} \frac{\left\langle\overline{B_{\phi}^{2}}\right\rangle}{s^{2}}
$$

Magnetic Rossby waves (cont’d)

- Fast modes:
$-\omega_{+} \rightarrow+\omega_{\mathrm{R}}\left(1+\omega_{\mathrm{M}}{ }^{2} / \omega_{\mathrm{R}}{ }^{2}\right)$ in the limit $\omega_{\mathrm{M}}{ }^{2} / \omega_{\mathrm{R}}{ }^{2} \ll 1$
- essentially (nonmag) Rossby waves (Busse 1986)
- travelling progradely (eastward) with timescales of O (months) in the fluid core
- Slow modes:
$-\omega \rightarrow-\omega_{M}{ }^{2} / \omega_{R}$ in the limit $\omega_{M}{ }^{2} / \omega_{R}{ }^{2} \ll 1$

$$
\hat{\omega}_{M R}=-\frac{\hat{\omega}_{M}^{2}}{\hat{\omega}_{R}}=-\frac{m^{3}\left(r_{o}^{2}-s^{2}\right)\left\langle\widetilde{B_{\phi}^{2}}\right\rangle}{2 \rho \mu_{0} \Omega s^{4}}
$$

- travelling retrogradely (westward) along the toroidal field B_{ϕ} on timescales of $\mathrm{O}\left(10^{2}\right.$ years)
- cf. torsional Alfven waves along Bs
- highly dispersive
- the governing equations (Cartesian)

$$
\begin{aligned}
\frac{\partial j_{z}^{\prime}}{\partial t} & =\frac{B_{0 x}}{\mu_{0}} \frac{\partial \xi_{z}^{\prime}}{\partial x} \\
-\frac{4 \rho \Omega \chi}{L} u_{y}^{\prime} & =B_{0 x} \frac{\partial j_{z}^{\prime}}{\partial x}
\end{aligned}
$$

cold

(Hori, Takehiro \& Shimizu, 2014)

Waves hint at strong-field dynamos?

- Linear, rotating magnetoconvection
(e.g. Chandrasekahr 1961, Fearn 1979; also Zhang \& Schubert 2000):
- as magnetic field is strengthened to $\Lambda=O(1)$, the thermal stability $\mathrm{Ra}_{\text {crit }}$, the preferred wavenumber $\mathrm{k}_{\text {crit }}$, and wave frequency $\omega_{\text {crit }}$ drop
- dynamos hypothesized in the regime:
'strong-field' dynamos (e.g. Roberts 1978)
- Note: all three effects not necessarily
- depend on the background magnetic field, boundary conditions, etc.

Waves hint at strong-field dynamos?

- Linear, rotating magnetoconvection
(e.g. Chandrasekahr 1961, Fearn 1979; also Zhang \& Schubert 2000):
- as magnetic field is strengthened to $\Lambda=O(1)$, the thermal stability $\mathrm{Ra}_{\text {crit }}$, the preferred wavenumber $\mathrm{k}_{\text {crit }}$, and wave frequency $\omega_{\text {crit }}$ drop
- dynamos hypothesized in the regime:
'strong-field' dynamos (e.g. Roberts 1978)
- Note: all three effects not necessarily
- depend on the background magnetic field, boundary conditions, etc.
- Convection-driven spherical dynamos likely approaching the regime (e.g. Yadav et al. 2016; Dormy 2016)
- force balances
- flow properties? (vigor/heat transfer/subcriticality, azimuthal length scales, and wave time scales)
- cf. plane layer models

Radial velocity in the equatorial plane at $E=10^{-6}, R a / R a_{c}=10, \mathrm{Pm} / \operatorname{Pr}=0.5$
(Yadav et al. 2016)

Convection-driven, spherical dynamo simulations

- Greatly studied for the past decades (e.g. Glatzmaier \& Roberts 1995; Kageyama \& Sato 1995; also reviews by Christensen \& Wicht 2007; Jones 2011)
- successful for reproducing observed features of planetary magnetic fields
- a tool for understanding the dynamics with self-generated magnetic fields
- MHD dynamos driven by Boussinesq convection in rotating spherical shells:
- Governing equations (dimensionless)

$$
\begin{aligned}
\frac{\partial \boldsymbol{u}}{\partial t}+\boldsymbol{u} \cdot \nabla \boldsymbol{u} & =\frac{P m}{E}\left[2 \hat{\boldsymbol{e}}_{z} \times \boldsymbol{u}-\nabla p+(\nabla \times \boldsymbol{B}) \times \boldsymbol{B}\right]+\frac{P m^{2} R a}{P r} T \hat{\boldsymbol{e}}_{r}+P m \nabla^{2} \boldsymbol{u} \\
\frac{\partial T}{\partial t}+\boldsymbol{u} \cdot \nabla T & =\frac{P m}{P r} \nabla^{2} T-1 \\
\frac{\partial B}{\partial t} & =\nabla \times(\boldsymbol{u} \times \boldsymbol{B})+\nabla^{2} \boldsymbol{B} \\
\nabla \cdot \boldsymbol{u} & =0, \quad \nabla \cdot \boldsymbol{B}=0
\end{aligned}
$$

- Parameters: modified Rayleigh, Ekman, kinetic/magnetic Prandtl numbers

$$
\begin{array}{rlrlrl}
R a & =\frac{g \alpha|\epsilon| D^{5}}{\nu \kappa \eta}, & E & =\frac{\nu}{\Omega D^{2}}, & P r & =\frac{\nu}{\kappa}, \\
& \sim 16 \mathrm{Ra}_{\text {crit }} & & =10^{-4}-10^{-6} & =1 & \\
\eta
\end{array}
$$

- Leeds spherical dynamo code: based on pseudo spectral method (e.g. Jones et al. 2011)

Slow MR waves in dynamo simulations

z-mean radial velocity <us $>$ in the equatorial plane

- Slow modes identified:
- retrograde drifts commonly seen in dynamo simulations
- their speeds accounted for by total phase speeds of wave and mean flow advection, $\left(\omega_{\mathrm{MR}}+\omega_{\text {adv }}\right) / \mathrm{m}$, where

$$
\begin{aligned}
& \hat{\omega}_{M R}=-\frac{\hat{\omega}_{M}^{2}}{\hat{\omega}_{R}}=-\frac{m^{3}\left(r_{o}^{2}-s^{2}\right)\left\langle\overline{\widetilde{B_{\phi}^{2}}}\right\rangle}{2 \rho \mu_{0} \Omega s^{4}} \\
& \omega_{\mathrm{adv}}=\widetilde{\zeta} m=\frac{\overline{\left\langle\widetilde{U_{\phi}}\right\rangle}}{s} m
\end{aligned}
$$

- 2D spectral analysis is crucial to distinguish each component
- Note: wave contribution depends on the radius s
- wave ~< advection at larger s

at $\mathrm{E}=10^{-5}, \mathrm{Pm} / \operatorname{Pr}=5, \mathrm{Ra} / \mathrm{Ra}_{\mathrm{c}}=8 \& \Lambda \sim 22$
(Hori, Jones \& Teed, 2015)

Slow MR waves in dynamo simulations

- Slow modes identified:
- retrograde drifts commonly seen in dynamo simulations
- their speeds accounted for by total phase speeds of wave and mean flow advection, $\left(\omega_{\mathrm{MR}}+\omega_{\text {adv }}\right) / \mathrm{m}$, where

$$
\begin{aligned}
& \hat{\omega}_{M R}=-\frac{\hat{\omega}_{M}^{2}}{\hat{\omega}_{R}}=-\frac{m^{3}\left(r_{o}^{2}-s^{2}\right)\left\langle\overline{\widetilde{B_{\phi}^{2}}}\right\rangle}{2 \rho \mu_{0} \Omega s^{4}} \\
& \omega_{\mathrm{adv}}=\widetilde{\zeta} m=\frac{\overline{\left\langle\widetilde{U_{\phi}}\right\rangle}}{s} m
\end{aligned}
$$

- 2D spectral analysis is crucial to distinguish each component
- Note: wave contribution depends on the radius s
- wave ${ }^{\sim}$ < advection at larger s

Exploring more cases

- MR waves were found in models when torsional waves were found
- generated magnetic fields of non-reversing dipole
- for strong-field solutions (Λ >~2; Pm >=5 or $\mathrm{E}=<10^{-5}$), good Taylorization (<0.2), good geostrophy ($\mathrm{U}_{\mathrm{C}}{ }^{>} \mathbf{~ 0 . 4}$)
- Note: excited azimuthal wavenumbers m vary
- chosen by the convective instability
- dependent on E, Ra, Λ, etc

Nonlinearity on waveforms?

The observed waves illustrate

- no wave packets
- isolated, sharp waveforms
- steepening
- shifted to positive

- reminiscent of cnoidal/solitary waves in weakly nonlinear,

dispersive waves (e.g. Whitham 1974)

The role of nonlinear Lorentz force

- Coriolis and Lorentz terms are dominant in the axial vorticity eq.
- Reynolds term remains minor
- The Lorentz term Ξ_{L} can be expanded, in terms of the mean and fluctuating parts, as

$$
\begin{array}{r}
\Xi_{L}=\frac{P m}{E}\left[\left\langle\overline{\widetilde{\boldsymbol{B}}} \cdot \nabla j_{z}^{\prime}\right\rangle+\left\langle\boldsymbol{b}^{\prime} \cdot \nabla j_{z}^{\prime}\right\rangle\right. \\
+(\text { other terms })]
\end{array}
$$

- first term for the restoring force
- second term for the leading nonlinear part
- The sum of the dominant restoring and nonlinear terms reproduces steepened shapes

$5.9 E+08$
$4.0 E+08$
$2.0 E+08$
$0.0 E+00$
$-2.0 E+08$
$-4.0 E+08$
$-5.9 E+08$

$3.2 E+09$
$2.2 E+09$
$1.1 E+09$
$0.0 E+00$
$-1.1 E+09$
$-2.2 \mathrm{E}+09$
$-3.2 E+09$

Toroidal field strength within the Earth's core

- The dispersion relation tells us about waves riding on mean flow advection

$$
\hat{\omega}_{M \beta}=\omega-\omega_{\mathrm{adv}}=-\frac{m^{3}\left(r_{o}^{2}-s^{2}\right)\left\langle\widetilde{\bar{B}_{\phi}^{2}}\right\rangle}{2 \rho \mu_{0} \Omega s^{4}}
$$

- a geomagnetic drift speed of 0.56 o/yr at 40ㅇ S (Finlay \& Jackson 2003)
- suppose a mean flow of $0.24 \circ / \mathrm{yr}$ (Pais et al. 2015)
- Given $\mathrm{m}=5$, this implies a z-mean toroidal field $\mathrm{B} \phi \sim 12 \mathrm{mT}$ at $\mathrm{s} \sim 0.8 \mathrm{r}_{\text {。 }}$
- equivalent to, or stronger than, the poloidal field $\mathrm{Bs} \geq 3 \mathrm{mT}$ (Gillet et al. 2010)

(Hori, Jones \& Teed, 2015)
- e.g. α^{2}-type or $\alpha \omega$-type
- stronger poloidal fields in dynamo simulations

In thin, stably stratified layers

- A stable layer at the top of the Earth's core
- SW models applied by poloidal field (Braginsky 1984, 1999)
- Solar tachocline at the bottom of the convection zone
- SW models applied by toroidal field (Gilman 2000; Zaqarashvili et al. 2007)
- ~ $3 \mathrm{~m} / \mathrm{s}$ westward drifts and eastward wavetrains? (Mclntosh et al. 2017)

Coronal brightpoints in Jan 2012 \& at around $15^{\circ} \mathrm{N} / 22^{\circ} \mathrm{S}$
d AIA/EUVI BP density (northern hemisphere)
(McIntosh et al. 2017)

e.g. equatorial waves (cartesian)

- β-plane shallow water models applied by an azimuthal field

$$
\begin{array}{ll}
\frac{\partial u_{x}}{\partial t}-f u_{y}=\frac{B_{x}}{4 \pi \rho} \frac{\partial b_{x}}{\partial x}-g \frac{\partial h}{\partial x}, & \frac{\partial b_{x}}{\partial t}=B_{x} \frac{\partial u_{x}}{\partial x}, \frac{\partial b_{y}}{\partial t}=B_{x} \frac{\partial u_{y}}{\partial x}, \\
\frac{\partial u_{y}}{\partial t}+f u_{x}=\frac{B_{x}}{4 \pi \rho} \frac{\partial b_{y}}{\partial x}-g \frac{\partial h}{\partial y}, & \frac{\partial h}{\partial t}+H_{0}\left(\frac{\partial u_{x}}{\partial x}+\frac{\partial u_{y}}{\partial y}\right)=0
\end{array}
$$

- when $f \sim \beta y$,

$$
\frac{d^{2} u_{y}}{d y^{2}}+\left[\frac{\omega^{2}}{C_{0}^{2}}-k_{x}^{2}\left(1+\frac{v_{A}^{2}}{C_{0}^{2}}\right)-\frac{k_{x} \beta}{\omega\left(1-k_{x}^{2} v_{A}^{2} / \omega^{2}\right)}-\frac{\beta^{2}}{C_{0}^{2}\left(1-k_{x}^{2} v_{A}^{2} / \omega^{2}\right)} y^{2}\right] u_{y}=0
$$

- cf. nonmagnetic case (e.g. Matsuno 1966) :
- a Schroedinger eq.
- oscillatory for $|y|<y_{c}$, i.e. equatorially trapped waves
- In the presence of magnetic field
- nonzero V_{A} increases y_{C}, i.e. releasing the trapped waves
- large V_{A} gives rise to a Bessel eq.

In spherical shells

- Nonaxisymmetric MAC waves classified:
- inertio-gravity
- Rossby
- Kelvin
- Rossby: for eq.symmetric $B \phi=B 0 \sin \theta$ (Marquez-Artavia et al., 2017)
- fast modes
- goes westward
- in the limit $\mathrm{V}_{\mathrm{M}}{ }^{2} / \mathrm{V}_{\mathrm{c}}{ }^{2} \ll 1, \omega=-\frac{2 \Omega_{0} m}{n(n+1)}$

- slow modes
- goes eastward
- in the limit $\mathrm{V}_{\mathrm{M}}{ }^{2} / \mathrm{V}_{\mathrm{c}}{ }^{2} \ll 1, \omega=\frac{m v_{a}^{2}}{2 \Omega_{0} R_{0}^{2}}(n(n+1)-2)$.
- slowly westward for $\mathrm{n}=\mathrm{m}=1$
- even polar trapped at large $\mathrm{V}_{\mathrm{M}}{ }^{2} / \mathrm{V}_{\mathrm{c}}{ }^{2}$
- become unstable at large $\mathrm{V}_{\mathrm{M}}{ }^{2} / \mathrm{V}_{\mathrm{c}}{ }^{2}$

Eigenfunctions of fast / slow MR waves for $\mathrm{m}=1, \alpha\left(\sim \mathrm{~V}_{\mathrm{M}}{ }^{2} \mathrm{~V}_{\mathrm{c}}{ }^{2}\right)=0.1, \varepsilon^{-1}\left(\sim \mathrm{~V}_{\mathrm{A}}{ }^{2} / \mathrm{V}_{\mathrm{c}}{ }^{2}\right)=0.01$

Summary

- Geo-/Jovian dynamo simulations are supporting the excitation of magnetic Rossby waves for incompressible/ anelastic fluids
- crests/troughs going retrogradely on timescales of $\mathrm{O}\left(10^{1-2} \mathrm{yrs}\right)$ in the Earth's core, about mean zonal flows
- excited when torsional Alfven waves were excited
- for strong-field dynamos (Pm >=5 or $\mathrm{E}=<10^{-4} ; \Lambda>^{\sim}$ 2)
- the speeds accounted for by the linear theory, but their waveforms steepened, likely due to nonlinear Lorentz terms
- their speeds potentially revealing the strength of the 'hidden' toroidal field
- induced by topography but also by compressibility

Thank you

QG vs. non-QG modes

- In spheres
- e.g. for Malkus field (1967)

$$
\mathrm{B}_{\phi}=\mathrm{B}_{0} \mathrm{se} \mathrm{e}_{\phi}
$$

- the solution, $P=P_{n}{ }^{m}(\mu) P_{n}{ }^{m}(\mu)$
- equatorially trapped for for small n
- even ($n-m$): eq.symmetric (QG) modes
- goes retrograde \& faster $\left(\approx-\omega_{\mathrm{m}}{ }^{2} / \omega_{\beta}\right)$
- odd ($\mathrm{n}-\mathrm{m}$): eq.anti-symmetric modes
- goes prograde \& slower $\left(\approx+\omega_{\mathrm{M}}{ }^{2} / \omega_{1}\right)$
- cf. MC waves in simple plane layers
- slow modes has no preference in propagation direction ($\approx \pm \omega_{\mathrm{M}}{ }^{2} / \omega_{\mathrm{c}}$)
- The geometrical effect splits the modes into a faster \& slower ones

