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Waves in	the	Earth’s	fluid	core

Waves	provide	us	with	information	about	the	‘invisible’	system
• torsional	Alfven	waves	(e.g.	Braginsky 1967,	Zatman &	Bloxham 1997)

– axisymmetric,	travelling	in	radius	s
– ~	6 yrs traveltime: Bs >~	2	mT (Gillet	et	al.	2010,	2015)

• axisymmetric	MAC	oscillations (e.g.	Braginsky 1993)

– in	a	thin,	stably	stratified	layer	at	the	top	of	the	core?
– ~	60	yrs geomagnetic	variation:		H	~	140	km?	(Buffett	2014)

• slow	magnetic	Rossby waves	(e.g.	Hide	1966,	Acheson	1978)
– nonaxisymmetric,	travelling	in	azimuth	f
– ~	300 yrs westward	drift:	 Bf ~	10	mT?	(Hori	et	al.	2015)

• (fast	magnetic)	Rossby waves	in	a	thin	stable	layer	(e.g.	Braginsky 1984)	
– ~	6 yrs westward	drift?	(Chulliat et	al.	2015)
– in	the	solar	tachocline also?:	~	2	yrs westward?	(McIntosh	et	al.	2017)	



• A	special	class	of	Alfven	waves
(Braginsky 1970;	also	Roberts	&	Aurnou 2012)
– the	azimuthal	momentum	eq on cylindrical	

surfaces	in	the	magnetostrophic balance	
gives	a	steady	state	(Taylor	1963)

– cylindrical	perturbations	on	the	state

» travel	in	radius	s	with	the	the	z-mean	
Alfven	speed	UA	 =	(<Bs2>/<r>µ0	)1/2

• Data:	
– probably	responsible	for	6-7	year	variations

» can	account	for	the	6	year	LOD	change
– the	observed	wave	speed	is	used	to	infer	

the	field	strength	within	the	core	
» <Bs2> 1/2 ≥	2	mT
» better	fits	with	the	scaling	law
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h⇢i, implying a wave equation for angular velocity hu0�i/s in the anelastic case (Jault
& Finlay, 2015). Here the restoring force is represented by F
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, while the remaining terms can be summed
up to a forcing term F

LD
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, as well as F 0
R

. A perturbation of angular velocity can propagate in
cylindrical radius s with an Alfvén speed U

A

. The speed depends on the magnitude of the background
poloidal field B2

s and the background density ⇢, both of which may vary with s. As expected for the
MHD wave, this special mode is also nondispersive, i.e. the speed independent of wavenumbers. Since the
equation allows both inward and outward propagation, a superposition of those modes, provided a similar
amplitude and proper excitation, could yield its standing waves and enable normal mode solutions. In
Earth, neverthelss, data as well as numerical simulations indicate its propagating nature, preferable to
standing ones (see sec. 1). We shall discuss below that standing TWs could be chosen in Jupiter.

3 Numerical simulations

To explore potential excitation of TW in the gas giant, we choose three Jovian dynamo models, which were
build by Jones (2014). We here overview only the essential part for the analysis shown below: see Jones
(2014) for the detailed description. The models exploit self-generation of magnetic fields by anelastic fluid
motions in rotating spherical shells, for which the equilibrium reference state calculated by French et al.
(2012) as well as viscous and di↵usion terms were taken into account. Given the reference state of density
⇢, electrical conductivity �, and temperature T , they model a metallic hydrogen region above a rocky
core, r � r

c

⇡ 6.45⇥ 106m ⇡ 0.09R
J

, and its continuous transition to a molecular hydrogen region. The
transition begins at around r ⇡ 0.85R

J

and only the region below a cut-o↵ level, r  r
cut

⇡ 6.7⇥107m ⇡
0.96R

J

, is treated in our simulations. The density scale height N⇢ = ln [⇢(r
c

)/⇢(r
cut

)] between the core
boundary and the cut-o↵ radius is approximately 3.08. Convection is largely driven by a uniform entropy
source, which is likely released as the planet cools; this di↵ers from the geodynamo, which is primarily
driven by a buoyancy source arising from the inner core boundary due to its freezing. As the electrical
conductivity � drops by more than five orders across the transition radius, a thin, poorly-conducting
layer is formed at the top of the shell. Since the Proudman-Taylor constraint rules fluid motions in the
hydrodynamic layer, though it is now compressible, it produces an imaginary cylinder that attaches to
the bottom of the thin layer at the equator. We call it a magnetic tangent cylinder (MTC), located at
s ⇡ 0.9r

cut

⌘ s
mtc

, whereas the solid core forms a kinematic TC at s = r
c

⌘ s
tc

. The core leaves only a
small fraction for the inside of the TC, and so we shall concentrate on the outside, s & s

tc

.
The chosen models and some key quantities are listed in table 1. They show the Rossby numbers Ro,

quantifying the relative strength of the inertia to the Coriolis force, no greater than 10�3. The advective
terms therefore only have a minor role, as assumed in the linear theory. The Elsasser number ⇤ measures
the ratio of the Lorentz force to the Coriolis force and amounts to 5-10 in our simulations. This would
indicate those models possibly strong-field dynamos when relying on incompressible, Boussinesq theories;
it is unclear that the scenario is applicable to anelastic fluids. Amongst the three, model I was reported
to reproduce a magnetic field that best resembled the one Juno recently found (Jones & Holme, 2017).

The magnetic fields self-generated in those runs are non-reversing dipole-dominated. They act as a
background field for MHD wave motions discussed below. Its poloidal part, Bs in cylindrical coordinate,
defines a frequency or a propagation speed of TW. In figure 1, a solid curve depicts the nondimensional
Alfvén speed, U

A

, as a function of cylindrical radius s for model I. Here the time and length are scaled
by the magnetic di↵usion time and the shell thickness (d = r

cut

� r
c

), respectively, and the bounds for
z-averages are taken at the r

cut

. In the figure, we also plot a speed U
A

with the density being constant

4

(The derivation of (24c) from (23d), though lengthy, is direct; it is included at the end of
appendix B. The reduction does not discard the effects of magnetic diffusion which
continues to be locked into the definition (23g) of R(s, t).)

The essence of (24c) is contained in
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which we call the canonical wave equation. (The additional bNs@s!A is one of two terms
that are new to the subject and are discussed later; see section 8.3 and appendix B.)
Equation (25) recovers something very similar to an Alfvén wave, called the torsional
wave in which !A evolves on the fast Alfvénic time scale

"A ¼ ro=VA $ 6 yr: ð26aÞ

This is why A was added to ! in (24c) and (25). Because "A is so similar to the time-scales
"LOD seen in figure 1, it is plausible that torsional waves are responsible for the LOD
variations, as argued by Gillet et al. (2010). Because it is so dissimilar to "m, it is sensible
to base discussions of torsional waves on representations of the form

V ¼ Vm þ vA: ð26bÞ

Then, when studying the waves, mac variables (m) can be assumed to be constant. In
section 8 and appendices B–D, we shall use (26b) but omit the A on wave variables such
as !A. We shall consider only the case when (23a) is nearly satisfied, and the wave
amplitude is so small that quantities such as (vA)2 are negligible.

In a torsional wave, the geostrophic cylinders are in relative angular motion about
their common (polar) axis; see figure 4(a). The response bA of B to the motion vA is not
the geostrophic average of B, but is determined by solving (11d,g) and boundary
conditions (20b–e). It can, as for an Alfvén wave, be visualized by using the frozen

Figure 4. Schematics showing (a) a geostrophic flow in the core, Vg, and (b) a plan view of an initially
cylindrical magnetic field (dashed line) distorted by v. The restoring Lorentz torque on the distorted magnetic
field, B (solid line), lead to the cylindrical propagation of torsional waves. Adapted from Dumberry 2007.
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• A	special	class	of	Alfven	waves
(Braginsky 1970;	also	Roberts	&	Aurnou 2012)	:
– the	azimuthal	momentum	eq on cylindrical	

surfaces	in	the	magnetostrophic balance	
gives	a	steady	state	(Taylor	1963)

– cylindrical	perturbations	on	the	state

» travel	in	radius	s	with	the	the	z-mean	
Alfven	speed	UA	 =	(<Bs2>/<r>µ0	)1/2

• Data:	
– probably	responsible	for	6-7	year	variations

» can	account	for	the	6	year	LOD	change
– the	observed	wave	speed	is	used	to	infer	

the	field	strength	within	the	core	
» <Bs2> 1/2 ≥	2	mT
» better	fits	with	the	scaling	law
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s and the background density ⇢, both of which may vary with s. As expected for the
MHD wave, this special mode is also nondispersive, i.e. the speed independent of wavenumbers. Since the
equation allows both inward and outward propagation, a superposition of those modes, provided a similar
amplitude and proper excitation, could yield its standing waves and enable normal mode solutions. In
Earth, neverthelss, data as well as numerical simulations indicate its propagating nature, preferable to
standing ones (see sec. 1). We shall discuss below that standing TWs could be chosen in Jupiter.

3 Numerical simulations

To explore potential excitation of TW in the gas giant, we choose three Jovian dynamo models, which were
build by Jones (2014). We here overview only the essential part for the analysis shown below: see Jones
(2014) for the detailed description. The models exploit self-generation of magnetic fields by anelastic fluid
motions in rotating spherical shells, for which the equilibrium reference state calculated by French et al.
(2012) as well as viscous and di↵usion terms were taken into account. Given the reference state of density
⇢, electrical conductivity �, and temperature T , they model a metallic hydrogen region above a rocky
core, r � r

c

⇡ 6.45⇥ 106m ⇡ 0.09R
J

, and its continuous transition to a molecular hydrogen region. The
transition begins at around r ⇡ 0.85R

J

and only the region below a cut-o↵ level, r  r
cut

⇡ 6.7⇥107m ⇡
0.96R

J

, is treated in our simulations. The density scale height N⇢ = ln [⇢(r
c

)/⇢(r
cut

)] between the core
boundary and the cut-o↵ radius is approximately 3.08. Convection is largely driven by a uniform entropy
source, which is likely released as the planet cools; this di↵ers from the geodynamo, which is primarily
driven by a buoyancy source arising from the inner core boundary due to its freezing. As the electrical
conductivity � drops by more than five orders across the transition radius, a thin, poorly-conducting
layer is formed at the top of the shell. Since the Proudman-Taylor constraint rules fluid motions in the
hydrodynamic layer, though it is now compressible, it produces an imaginary cylinder that attaches to
the bottom of the thin layer at the equator. We call it a magnetic tangent cylinder (MTC), located at
s ⇡ 0.9r

cut

⌘ s
mtc

, whereas the solid core forms a kinematic TC at s = r
c

⌘ s
tc

. The core leaves only a
small fraction for the inside of the TC, and so we shall concentrate on the outside, s & s
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.
The chosen models and some key quantities are listed in table 1. They show the Rossby numbers Ro,

quantifying the relative strength of the inertia to the Coriolis force, no greater than 10�3. The advective
terms therefore only have a minor role, as assumed in the linear theory. The Elsasser number ⇤ measures
the ratio of the Lorentz force to the Coriolis force and amounts to 5-10 in our simulations. This would
indicate those models possibly strong-field dynamos when relying on incompressible, Boussinesq theories;
it is unclear that the scenario is applicable to anelastic fluids. Amongst the three, model I was reported
to reproduce a magnetic field that best resembled the one Juno recently found (Jones & Holme, 2017).

The magnetic fields self-generated in those runs are non-reversing dipole-dominated. They act as a
background field for MHD wave motions discussed below. Its poloidal part, Bs in cylindrical coordinate,
defines a frequency or a propagation speed of TW. In figure 1, a solid curve depicts the nondimensional
Alfvén speed, U
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by the magnetic di↵usion time and the shell thickness (d = r

cut

� r
c

), respectively, and the bounds for
z-averages are taken at the r

cut

. In the figure, we also plot a speed U
A

with the density being constant

4

(Gillet et al.  2010)

changes of the core angular momentum. We are in the presence of
forced torsional waves24, the triggering mechanism of which remains
to be understood. Assuming that the geostrophic velocity at s 5 0.35c
does not differ much from the angular rotation of the solid inner
core, only a tiny inner core oscillation is predicted from our study, of
the order of 1022 degrees per year. Although it is difficult to detect
from seismological studies26, this quasi-harmonic signal could con-
stitute a target on which to focus.

In a scenario where they are responsible for the six-yearDLOD signal,
torsional Alfvén waves no longer explain the decadal to centennial
DLOD, as was previously thought3,4,16. Hence, such changes remain to
be understood. For these periods that are longer than the Alfvén time,
we envision a magnetic field B inside the core, constantly evolving under
Taylor’s constraint27. One consequence is that geostrophic (zonal) and
ageostrophic (non-zonal) motions are coupled: the zonal/non-zonal
anisotropy observed in non-magnetic quasi-geostrophic turbulence28

is thus unlikely to affect large length-scale flow structures in the Earth’s
core. Any long-term change in the non-zonal velocity and magnetic
fields would entail changes in geostrophic velocities and in the core
angular momentum. Finally, the short travel time of the torsional waves
in the core interior may explain the occurrence of rapid interannual
flow variations, as inferred from satellite data29 and the suddenness of
geomagnetic jerks. Indeed, Alfvén torsional waves can rapidly transport
a perturbation occurring in the core interior.

Detection of fast torsional oscillations helps us to develop a better
physical understanding of geomagnetic variations and reconcile
numerical geodynamo models with geomagnetic observations. In addi-
tion, better knowledge of core angular momentum changes in a wider
spectral range will also result in a better description of angular
momentum changes in the outer geophysical envelopes (oceans, ice
caps, atmosphere) on interannual timescales. The assimilation tech-
nique21 applied in our study is well-suited to the analysis of long data
series. However, recent high-quality satellite data cover only a short
period compared to the time taken by the physical processes responsible
for the geomagnetic secular variation. We must overcome difficulties
met when merging together data of very different quality. This can be
achieved by propagating the information contained in satellite data20

backward in time, using the data to come soon from the European
Space Agency’s Swarm mission30. This goal is a strong incentive for
developing dynamical models of the evolution of core flows, which
include the torsional waves we have focused on here.

METHODS SUMMARY
We first perform an ensemble inversion6 of quasi-geostrophic core flows7 from
the geomagnetic field model gufm112, over the time span 1840–1990. A good
coherence is found between the DLOD data LUNAR97 (ref. 13) and its predic-
tions from the ensemble average of core flow models, in a period range of around
six years. The ensemble average of the spherical harmonics zonal flow coeffi-
cients, filtered around this period, are used as data in a dynamical inversion of
torsional waves over 1960–1982. To retrieve the profile ~BBs sð Þ, the conductance G
at the base of the mantle and the torque C applied on the tangent cylinder, we use
a variational data assimilation framework21, for which we derive error estimates
from the dispersion in the ensemble of flow solutions. Introducing an auxiliary
variable t, we separate the second-order differential equation (1) for torsional
waves into two first-order differential equations:
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{h souterð Þ BsBwdzdw ~ 0,

and C(t) 5 Acos(ct 1 Q). This prevents the predicted velocity from being influenced
too much by the blurred image of the core state that results from the ensemble
inversion.Theinversionissensitiveonlytolarge length-scalepatternsofageostrophic
flow likely to exhibit a complex radial structure4. We seek control vectors
x~ F sð Þ, G~BB2

r , A, c, Q
$ %

minimizing a cost function:
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ðsouter
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L2F

Ls2

' (2

dszaG G~BB2
r

! "2 ð3Þ

The first term measures the misfit between data and predictions (see the
Supplementary Information for more on error covariances, data and the forward
operator). The last two terms are regularizations for the phase speed of Alfvén
waves and their dissipation, respectively, with aB and aG the associated damping
parameters. By systematically exploring the parameter space (aB, aG), we obtain a
range of acceptable solutions adequately fitting the data within the error bars.
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Figure 3 | Torsional Alfvén waves can account for the six-year geostrophic
oscillation. Time–cylindrical radius map of the bandpass-filtered angular
velocity ũg(s, t). The colour scale ranges between 20.4 km yr21 (blue) and
10.4 km yr21 (yellow) with contours every 0.02 km yr21. a, Filtered
ensemble average. As inside the black box in Fig. 2b (outside the tangent
cylinder for 1960–1982) but truncated at spherical harmonic degree n 5 9.
This corresponds to the observation ~uuobs

g s, tð Þ used for the data assimilation.
b, Assimilation output (n ( 9). Predictions ~uupred

g s, tð Þ resulting from the
torsional wave assimilation of the ~ttobs

n0 tð Þ
$ %

n~1,3,...,9
for damping parameters

(aG, aB) 5 (100, 3 3 1027), with a normalized misfit of 0.87 (see
Supplementary Information for details).
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Figure 4 | The magnetic field ~BBs sð Þ exceeds 2–3 mT in most of the fluid
domain outside the tangent cylinder, except towards the Equator, where it
reaches values close to what is observed at the CMB. r.m.s. value of the
cylindrical radial magnetic field ~BBs sð Þ versus cylindrical radius obtained by
assimilation of the ~ttobs

n0 tð Þ
$ %

n~1,3,...,9
, using the torsional waves dynamical

model (equation (2)). The grey shaded area corresponds to the domain in
which acceptable solutions have been found. The colour curves result from
assimilation runs using different damping parameters (aG, aB) (see the
Methods and the Supplementary Information for details).
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from the tangent cylinder to the Equator. Such fast propagation is
made possible by a large magnetic field inside the core, of amplitude
several millitesla. At large cylindrical radii, in the Equatorial region,
the propagation slows down. In a torsional wave scenario, that obser-
vation is consistent with a weaker field close to the Equator.
Furthermore, the absence of a reflected wave suggests the presence
of significant Ohmic dissipation. This is due either to large gradients
of the induced magnetic field, resulting from inhomogeneities in the
Alfvén wave velocity, or to the presence of a conducting layer at the
base of the lower mantle19. We have explored this second hypothesis.

The ensemble average of the filtered zonal flow coefficients are now
considered as observations for a second inversion. To obtain not only
the strength but also the profile of ~BBs sð Þ, we use a variational data
assimilation framework20,21 that rests on the torsional wave equation
outside the tangent cylinder19:
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The last term represents magnetic friction at the core–mantle boundary
(CMB) in the presence of a conducting layer at the bottom of the
mantle, of conductance G. The squared radial magnetic field at the

CMB, ~BB2
r sð Þ~ 1

4p

Ð 2p
0 B2

r s, w, hð ÞzB2
r s, w, {hð Þ

$ %
dw, is chosen to

be uniform for the sake of simplicity. We control, using the variational

approach, the profile ~BBs sð Þ, the product G~BB2
r and the torque C on the

tangent cylinder (see Methods). Figure 3 illustrates one solution
example: the time–radius map of the predicted velocity (Fig. 3b) com-
pares well with that of the observations (Fig. 3a). Furthermore, the
predicted velocity explains the observed six-year DLOD changes well
(Fig. 2a), the amplitude of which, at about 0.2 ms, corresponds in turn
to C < 2 3 1017 N m.

Figure 4 displays the dispersion of the acceptable solutions (see
Supplementary Information) in terms of profiles of ~BBs sð Þ. They all
require ~BBs to be larger than 2–3 mT in most of the outer core, except
towards the Equator, where it decreases towards intensities consist-
ent with the fraction of a millitesla obtained at the CMB. At radii
between 0.4c and 0.8c, we find a wide range of acceptable amplitudes:

we thus provide only a lower bound for the field intensity in that
region. Our findings are in line with estimates (1) inferred from
quasi-geostrophic core-flow inversions assuming a magnetostrophic
balance6, (2) deduced from numerical geodynamo models1, and (3)
required to explain core nutations22. Having an internal field as
strong as 5 mT r.m.s. is compatible with magnetic dissipation con-
siderations23. In addition, because the torsional waves are interannual
rather than decadal, concerns raised about excessive damping at the
CMB24 do not apply.

Acceptable solutions show 30ƒG~BB2
r ƒ140 S T2, with median

value 70 S T2. For ~BBr~0:7 mT at the CMB22 (see Fig. 4), this yields
a conductance G g [0.6, 2.8] 3 108 S, with a median value of
1.4 3 108 S. If it seems large compared to recent results from
lower-mantle mineral physics25, it is nevertheless not in conflict with
studies of electromagnetic induction in the Earth’s mantle. A six-year
signal probes the entire thickness D of the conducting layer at the
bottom of the mantle, of conductivity smantle 5 G/D. For a value of
smantle ten times smaller than the outer core conductivity
score < 5 3 105 S m21, this yields a thickness of D < 3 km, whereas
for a value of smantle similar to score, it yields a thickness D < 300 m.
That estimate is compatible with the one obtained from the analysis
of the daily nutations22 only if a marginal quantity of electrically
conducting material lies outside the layer probed by nutations, of
thickness d < 200 m for smantle < score. The magnetic torque at the
CMB, together with the torque C at the tangent cylinder, balance time
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time domain used for the assimilation of torsional waves (Fig. 3).
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Uf in a core flow model inverted from 
the geomagnetic variation gufm1



Nonaxisymmetric waves	in	the	core?
• Possibly	related	to	the	geomagnetic	westward	drift

– the	nonaxisymmetric part	of	the	field	moving	in	azimuth	
• significant	in	the	Atlantic	hemisphere:	period	~	3*102 yrs

– probably	a	mixture	of	flow	advection	(Bullard+	1950) and	wave	propagation	(Hide	1966)	
• à How	can	we	separate	the	signal	due	to	waves?

- l 
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both of which could conceivably be occur- 
ring at the surface of Earth's core. One 
possibility is that a westward equatorial jet 

magnitude of the original signal Brn but cap- 
tures 42% of the change observed at the core 
surface (11). Consequently, we are able to 
isolate new aspects of the f1eld evolution that 
were previously obscured. Rather than a stat- 
ic picture with small-amplitude features 
riding on top, the processed data of the resid- 
ual field reveal a dynamic f1eld morphology 
that evolves rapidly over the 400 years stud- 
ied (Fig. 1) (movie S3). In the equatorial 
region we observe a series of high-amplitude 
flux foci moving westward. Field changes are 
most obvious under the Atlantic hemisphere 
while less activity occurs under the Pacif1c 
hemisphere, suggesting some longitudinal 
modulation of the field or of the mechanism 
causing its motion (12, 13). 

We constructed time-longitude diagrams 
(14-1 of the residual f1eld every 2° of 
latitude in order to view zonal motions, 
which are important in rapidly rotating fluids 
such as Earth's liquid outer core because of 
the influence of strong Coriolis forces. West- 
ward motion of a succession of flux foci was 
observed at the equator (Fig. 2A) and less 
clearly at mid-latitudes (e.g., Fig. 2B at 
40°S). Two-dimensional frequency-wave- 
number power spectra were calculated from 
the time-longitude diagrams. Peaks in these 
spectra pinpoint the preferred zonal wave- 
numbers m (where m = 360°/A and A is the 
angular wavelength in degrees) and frequen- 
ciest(wheref = 1/T and T is the period in 
years) of the zonal motion of the residual 
f1eld at each latitude. At the equator, the 
dominant wavenumber was m = 5 (i.e., A = 
72°) andf = 3.75 x 10-3 year-l (i.e., T= 
270 years), whereas at 40°S, the f1eld change 
was less monochromatic with more power at 
lower wavenumbers. At 20°N, we found a 
strong m = 8 signal consistent with high- 
resolution maps of the radial magnetic field at 
the core surface, recently obtained from sat- 
ellite measurements (17). 

The gradient of a diagonal line produced by 
a moving feature in a time-longitude diagram 
measures the apparent zonal speed of that fea- 
ture. We determined the power traveling at all 
possible gradients in our time-longitude dia- 
grams by means of a technique based on the 
Radon transform (18, 19). A prominent peak at 
the equator (Fig. 3) identifies the highest am- 
plitude, most robust zonal motion of the resid- 
ual field in the record, at a speed of 17 km 
year- l (0.27° year- l) westward. Less pro- 
nounced peaks were found at latitudes 55°N (18 
km year- l or 0.49° year- l) and at 40°S (26 km 
year-l or 0.56° year-l). To assess the longev- 
ity of the peaks, we applied the Radon speed 
determination method to time subwindows of 
the time-longitude diagrams. We found that the 
striking equatorial peak was present through- 
out, whereas the smaller peak at 55°N was 
obvious only from 1750 to 1880 and the peak 
at 40°S was strongest from 1800 to the present. 

Observations of zonal motion of mag- 
netic field at low latitudes can be accounted 
for by two rather different mechanisms, 

Fig. 1. Snapshot of the 
nonaxisymmetric radial 
magnetic field, high- 
pass filtered with a cut- 
off period of 400 years 
(referred to in the text 
as the residual field), 
shown at the core sur- 
face in 1850. 
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Fig. 2. Time-longitude diagrams of the residual field at specific latitudes (A) 0° (the equator) and 
(B) 40°S. Frequency-wavenumber spectra of these time-longitude diagrams are shown in (C) and 
(D), respectively; peaks pinpoint the dominant zonal wavenumbers (m) and frequencies (f = 1/T, 
where T is the period) of the zonal field motions. 
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Fig. 3. Power moving 
with eastward zonal 
speeds between -60 
and 60 km year-1 in 
time-longitude diagrams 
of the residual field, ev- 
ew 2° latitude from 
70°N to 70°S. A maxi- 
mum is found at the 
equator, indicating a ro- 
bust measurement of 
westward motion (at 
-17 km year-') in this 
region. Weaker signals 
are observed at mid-lat- 
itudes, particularly near 
40°S (-26 km year-1) 
and 55°N (-18 km 
year-1) 
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• Key	ingredients	(Hide	1966;	Acheson	1978;	also	Hori	et	al.	2015):
– axial	vorticity	equation	in	a	quasi-magnetostrophic

balance	(L=O(1);	Ro,	E<<1)

coupled	with	the	induction	equation		

– spherical	geometry	(topographic	b-effect)	
– almost	independent	of	z	(quasi-geostrophic)
– azimuthal	length	scales	shorter	than	radial	ones

• Dispersion	relations	about	a mean	flow:		
with	a	form	of	 ei(mf– wt)

where	Rossby and	Alfven	frequencies	

Magnetic	Rossby waves
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a QG eigenfunction for Bf = B0 s ef
in a meridional section

(after Malkus 1967)

because the convection driving the modes in the models consists mainly of225

tall thin columns. We then operate d
dt

= @
@t

+ hfU�i
s

@
@�

over the left-hand side226

of (15) to obtain227

d2h⇠0zi
dt2

+
Pm

E

s

(r2o � s2)

d

dt
[u0

s(H) + u0
s(�H)]� Pm

E

*
fB�

s

@

@�

dj0z
dt

+
= 0 . (17)

Substitution of the left-hand side of the induction equation (16) into this and228
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For some simple fields this equation can be solved analytically (see Canet et230

al. (2014) for detailed analysis). We instead suppose that u0
s is approximately231

geostrophic, so that u0
s(H) + u0
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si, and that the radial gradient232
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Here we seek solutions with a form of hu0
si ⇠ eı(m��!t) at given s and obtain237

the dispersion relations of the fast and slow modes as238

! = !adv + !̂± = !adv + !̂R

"
1

2
± 1

2

s

1 + 4
!̂2
M

!̂2
R

#
(20)

where the Rossby, Alfvén, and advection frequencies are239

!̂R =
Pm

E

2s2

(r2o � s2)m
, !̂2

M =
Pm

E

m2hfB2
�i

s2
and !adv =

mhfU�i
s

, (21)

respectively. We see that the wave frequency is the sum of the dynamical240

wave frequency plus an advective term due to the mean flow.241
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• Fast	modes:	
– w+à +wR (1+wM

2/wR
2)	in	the	limit wM

2/wR
2 <<	1

– essentially	(nonmag)	Rossby waves	(Busse 1986)
– travelling	progradely (eastward) with	timescales	

of	O(months)	in	the	fluid	core

• Slow	modes:	
– w-à -wM

2/wR in	the	limit wM
2/wR

2 <<	1

– travelling	retrogradely (westward)	along	the	
toroidal field	Bf on	timescales	of	O(102 years)

• cf.	torsional	Alfven	waves	along	Bs
– highly	dispersive
– the	governing	equations	(Cartesian)

Magnetic	Rossby waves	(cont’d)
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(Hori, Takehiro & Shimizu, 2014)

The fast modes !̂+ essentially recall the hydrodynamic Rossby waves,242

which travel prograde with the frequency !̂R about the advection part. They243

arise from a balance between the first two terms of (19), dh⇠zi/dt and ⌅C .244

By contrast, the slow modes !̂� are a unique solution of rotating MHD,245

sometimes called MR waves or MC-Rossby waves. Their properties become246

evident when taking the limit !̂2
M/!̂2

R ⌧ 1 on the slow mode, !̂�, to obtain247

(using the binomial approximation)248

!̂MR = � !̂2
M

!̂R

= �m3hfB2
�i(r2o � s2)

2s4
, (22)

and the observed frequency will be the sum of !̂MR and the advection fre-249

quency !adv. This implies a much lower frequency and a retrograde propa-250

gation unless the advective flow is large and eastward. The corresponding251

phase speed is given VMR = !̂MR/m, and similarly for the Rossby and Alfvén252

phase speeds. The magnetic Rossby speed goes up as the wavenumber m in-253

creases or the radius s decreases. A balance between the last two terms, ⌅C254

and ⌅L, is vital for this mode, indicating that the time variations arise from255

the induction equation while the momentum equation is almost in balance.256

These slow waves will be distinguished from Alfvén or Rossby (fast MR)257

modes in terms of dispersion relations ! = !(m), phase velocity !/m, and258

vorticity balances.259

At fixed s and hence hfB2
�i, all dispersion relations (20) are comprised of260

MR branches at lower wavenumber m and Alfvén branches at higher m. The261

transition will occur when !̂2
M/!̂2

R ⇡ 1, i.e. m4 ⇡ 2s6/(r2o � s2)2hfB2
�i. We262

did not observe signals of Alfvén branches in our simulations, but it could263

be possible if faster or smaller-scale disturbances are provided, for instance,264

by more vigorous convection. Studies of equatorial atmospheric dynamics265

demonstrate an impressive ability to distinguish several wave modes through266

space-time spectra and theoretical dispersion relations (e.g. Kiladis et al.,267

2009).268

Our assumption of a short azimuthal length scale means terms involving269

fB� dominate over the terms involving the poloidal field, fBs and fBz. We spec-270

ulate that if these terms do become significant, the dispersion relation would271

become almost proportional to m. However, solving the linear equations in272

this case becomes di�cult. Applying the assumption ⇠0z ⇡ �1
s

@
@�
hu0

si helps to273

simplify our equation considerably. To pursue analytical solutions when all274
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Waves	hint	at	strong-field	dynamos?
• Linear,	rotating	magnetoconvection

(e.g.	Chandrasekahr 1961,	Fearn 1979;	also	Zhang	&	Schubert	2000):

– as	magnetic	field	is	strengthened	to	L=O(1),		the	
thermal	stability		Racrit ,	the	preferred	wavenumber	
kcrit ,	and	wave	frequency	wcrit drop	

– dynamos	hypothesized	in	the	regime:		
‘strong-field’	dynamos	(e.g.	Roberts	1978)

– Note:	all	three	effects	not	necessarily
• depend	on	the	background	magnetic																						

field,	boundary	conditions,	etc.

Rac
mag

= O(E-1)

Rad
mag

Rmd
mag

Ra

Flow vigor
U or Rm

Rac
= O(E-4/3)

Field strength
B2 or L

RaRad

Rmd

L=O(1)

Strong field dynamo

Weak field dynamoL=O(E)
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• Convection-driven	spherical	dynamos	likely	
approaching	the	regime	(e.g.	Yadav	et	al.	2016;	Dormy	2016)	

– force	balances
– flow	properties?	(vigor/heat	transfer/subcriticality,	

azimuthal	length	scales,	and	wave	time	scales)	
• cf.	plane	layer	models		

is more prominent at E= 10−6. Furthermore, in a single system,
there might be regions where a MAC state prevails whereas, in
some other regions, it may not (also see refs. 29 and 34).
In Fig. 3, we present the three-dimensional morphology of

the convection in the HD and in the dynamo case for the
lowest-viscosity simulation with the largest ratio of Lorentz force
to viscous and inertial forces. The HD setup has small axially
aligned tube-like convection columns. In the dynamo case,
however, the convection occurs in the form of thin sheets
stretched in the cylindrically radial direction. It is also clear that,
compared with the HD case, the convective structures vary more
along the rotation axis. Both features demonstrate the influence
of the Lorentz forces on the convention morphology.
Another way to quantify the relaxed Proudman−Taylor con-

straint in the dynamo cases is to analyze the total heat transferred
from the bottom boundary to the top; this stems from the notion
that rotation quenches the efficiency of convection by suppressing
motions along the rotation axis (12). Any relaxation of this

constraint will lead to a gain in heat transfer efficiency. We use the
ratio of the Nusselt number Nu (ratio of the total heat and the
conductive heat transferred from the bottom to the top boundary)
for dynamo and HD cases as a function of the dynamo-generated
average magnetic field strength (Fig. 4). At E= 10−4, the Nu ratio
remains close to unity, implying that the convective heat transport
in dynamo and HD cases is similar. At E= 10−5, the Nu ratio peaks
for Λ≈ 3 and reaches a value of about 1.3 (18). This enhancement
of heat transport by the presence of a magnetic field is more pro-
nounced when we further decrease E to 10−6. Here, the heat flow is
doubled for Λ≈ 1. Comparing this figure with Fig. 1 D−F high-
lights that the gain in the heat transfer efficiency in the dynamo
cases is largest when the Lorentz force is maximally dominant
over viscous and inertial forces.

Discussion
To summarize, we used a systematic parameter study to test the
existence of a dynamical state in dynamo simulations where

Fig. 2. (A−D) Radial velocity, given in terms of the Reynolds number (u D=ν, where u is the local velocity), in the equatorial plane of the HD simulations.
(E−H) The same for the corresponding magnetohydrodynamic cases. (A and E) E = 10−3, Ra = 6 × 105; (B and F) E = 10−4, Ra = 7 × 106; (C and G) E = 10−5, Ra =
108; and (D and H) E = 10−6, Ra = 2 × 109. The Rayleigh number of all of the cases shown is about 10 times Rac. The color maps are saturated at values lower
than the extrema to highlight fainter structures.

Fig. 3. Perspective view of (A) an HD case and (B) a dynamo case with E= 10−6, Pm = 0.5, and Ra= 2× 109. The radial velocity on the equatorial plane is given
in terms of the Reynolds number. The blue and light orange contours represent radial velocity of −300 and 300, respectively.

12068 | www.pnas.org/cgi/doi/10.1073/pnas.1608998113 Yadav et al.

Radial velocity in the equatorial plane
at E = 10-6, Ra/Rac = 10, Pm/Pr = 0.5 

(Yadav et al. 2016)

dynamo

hydro



• Greatly	studied	for	the	past	decades	(e.g.	Glatzmaier &	Roberts	1995;	Kageyama &	Sato			
1995;	also	reviews	by	Christensen	&	Wicht 2007;	Jones	2011)

– successful	for	reproducing	observed	features	of	planetary	magnetic	fields
– a	tool	for	understanding	the	dynamics	with	self-generated	magnetic	fields

• MHD	dynamos	driven	by	Boussinesq convection	in	rotating	spherical	shells:
– Governing	equations	(dimensionless)

– Parameters:	modified	Rayleigh,	Ekman,	kinetic/magnetic	Prandtl numbers

~	16	Racrit =	10-4	- 10-6 =	1																	=	1-5

– Leeds	spherical	dynamo	code:	based	on	pseudo	spectral	method	(e.g.	Jones	et	al.	2011)	

Convection-driven,	spherical	dynamo	simulationsver.1.4 March 4, 2015 KH

3 Formulation/scaling for numerical simulations

Based on RT’s note in September 2014; Teed et al. (2014,b);

Scaling the variables:

x = Dx∗ , t =
D2

η
t∗ , T =

ϵD2

η
T∗ , B =

√
ρµ0ΩηB∗ (16)

The dimensionless governing equations:

∂u

∂t
+ u ·∇u =

Pm

E
[2êz × u−∇p+ (∇×B)×B] +

Pm2Ra

Pr
T êr + Pm∇2u (17)

∂T

∂t
+ u ·∇T =

Pm

Pr
∇2T − 1 (18)

∂B

∂t
= ∇× (u×B) +∇2B (19)

∇ · u = 0 , ∇ ·B = 0 (20)

where the non-dimensional parameters are

Ra =
gα|ϵ|D5

νκη
, E =

ν

ΩD2
, P r =

ν

κ
, Pm =

ν

η
(21)

• magnetoconvection: rigid/no-slip, electrically insulating (except the axial dipole of magnitude B0),
fixed temperature b.c.s, and differential heating

• dynamos: rigid/no-slip, electrically insulating, fixed heat-flux b.c.s, and volumetric sink

3.1 Waves in cylindrical coordinates

Consider a cylindrical polar coordinate system (s,φ, z)

Prepare some notations:
time-average (mean/fluctuating)

Ã(s,φ, z) =
1

τ

∫ τ

0
A(t, s, z,φ)dt , A′ = A− Ã (22)

z-average (geostrophic/ageostrophic)

⟨A⟩(t, s,φ) = 1

2H

∫ +H

−H
A(t, s, z,φ)dz , Aa = A− ⟨A⟩ (23)

φ-average (axisymmetric/nonaxisymmetric)

A(t, s, z) =
1

2π

∫ 2π

0
A(t, s, z,φ)dφ , An = A−A (24)

3.1.1 Momentum equation

The φ component of (17) includes the torsional oscillations. When performing the φ and z averages of
the equation, we get

∂⟨uφ⟩
∂t

= −⟨êφ · (∇ · uu)⟩+ Pm

E
⟨êφ · ((∇×B)×B)⟩+ Pm⟨êφ ·∇2u⟩ (25)

= FR + FL + FV
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[2êz × u−∇p+ (∇×B)×B] +

Pm2Ra

Pr
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z-average (geostrophic/ageostrophic)

⟨A⟩(t, s,φ) = 1

2H

∫ +H

−H
A(t, s, z,φ)dz , Aa = A− ⟨A⟩ (23)

φ-average (axisymmetric/nonaxisymmetric)

A(t, s, z) =
1

2π

∫ 2π

0
A(t, s, z,φ)dφ , An = A−A (24)

3.1.1 Momentum equation

The φ component of (17) includes the torsional oscillations. When performing the φ and z averages of
the equation, we get

∂⟨uφ⟩
∂t

= −⟨êφ · (∇ · uu)⟩+ Pm

E
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• Slow	modes	identified:
– retrograde	drifts	commonly	seen	in	

dynamo	simulations	
– their	speeds	accounted	for	by	total	

phase	speeds of	wave	and	mean	flow	
advection,	(wMR +	wadv)/m,	where

– 2D	spectral	analysis	is	crucial	to															
distinguish	each	component

• Note:	wave	contribution													
depends	on	the	radius	s
– wave	~<	advection	at	larger	s

at E = 10-5, Pm/Pr = 5, Ra/Rac = 8 & L ~ 22
(Hori, Jones & Teed, 2015)

(a)

Slow	MR	waves	in	dynamo	simulations
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The fast modes !̂+ essentially recall the hydrodynamic Rossby waves,242

which travel prograde with the frequency !̂R about the advection part. They243

arise from a balance between the first two terms of (19), dh⇠zi/dt and ⌅C .244

By contrast, the slow modes !̂� are a unique solution of rotating MHD,245

sometimes called MR waves or MC-Rossby waves. Their properties become246

evident when taking the limit !̂2
M/!̂2

R ⌧ 1 on the slow mode, !̂�, to obtain247

(using the binomial approximation)248

!̂MR = � !̂2
M

!̂R

= �m3hfB2
�i(r2o � s2)

2s4
, (22)

and the observed frequency will be the sum of !̂MR and the advection fre-249

quency !adv. This implies a much lower frequency and a retrograde propa-250

gation unless the advective flow is large and eastward. The corresponding251

phase speed is given VMR = !̂MR/m, and similarly for the Rossby and Alfvén252

phase speeds. The magnetic Rossby speed goes up as the wavenumber m in-253

creases or the radius s decreases. A balance between the last two terms, ⌅C254

and ⌅L, is vital for this mode, indicating that the time variations arise from255

the induction equation while the momentum equation is almost in balance.256

These slow waves will be distinguished from Alfvén or Rossby (fast MR)257

modes in terms of dispersion relations ! = !(m), phase velocity !/m, and258

vorticity balances.259

At fixed s and hence hfB2
�i, all dispersion relations (20) are comprised of260

MR branches at lower wavenumber m and Alfvén branches at higher m. The261

transition will occur when !̂2
M/!̂2

R ⇡ 1, i.e. m4 ⇡ 2s6/(r2o � s2)2hfB2
�i. We262

did not observe signals of Alfvén branches in our simulations, but it could263

be possible if faster or smaller-scale disturbances are provided, for instance,264

by more vigorous convection. Studies of equatorial atmospheric dynamics265

demonstrate an impressive ability to distinguish several wave modes through266

space-time spectra and theoretical dispersion relations (e.g. Kiladis et al.,267

2009).268

Our assumption of a short azimuthal length scale means terms involving269

fB� dominate over the terms involving the poloidal field, fBs and fBz. We spec-270

ulate that if these terms do become significant, the dispersion relation would271

become almost proportional to m. However, solving the linear equations in272

this case becomes di�cult. Applying the assumption ⇠0z ⇡ �1
s

@
@�
hu0

si helps to273

simplify our equation considerably. To pursue analytical solutions when all274
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• MR	waves	were	found	in	models	
when	torsional	waves	were	
found	
– generated	magnetic	fields	of								

non-reversing	dipole
– for	strong-field	solutions	(L >~	2;					

Pm	>=	5	or	E	=<	10-5)	,	good	
Taylorization (<	0.2),	good	
geostrophy (U’C >	0.4)	

• Note:	excited	azimuthal	wave-
numbers	m	vary
– chosen	by	the	convective		

instability
• dependent	on	E,	Ra,	L,	etc

Exploring	more	cases

Azimuth f

Ti
m

e 
 t

E=5*10-6, Pm=2, Ra/Rac = 16
& L ~ 6
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& L ~ 22
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Fig. 4: The time evolution of ⟨u′s⟩ at radius r = 0.5ro for the dynamo run 5R5 (cf. Fig. 3c). Time
evolves from bottom to top.
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The	observed	waves	illustrate
• no	wave	packets	
• isolated,	sharp	waveforms

– steepening
– shifted	to	positive	

• reminiscent	of	cnoidal/solitary	
waves	in	weakly	nonlinear,	
dispersive	waves	(e.g.	Whitham 1974)

– cf.	(nonmag)	solitary	Rossby
(e.g.	Redekkop 1977,	Yamagata	1982)		

Nonlinearity	on	waveforms?

Azimuth / radian
Evolution of amplitude <us’> at s=0.5ro

(Hori, Teed & Jones 2017)

t = 0.004

t = 0.006

t = 0.005



• Coriolis	and	Lorentz	terms	are	
dominant	in	the	axial	vorticity	eq.
– Reynolds	term	remains	minor

• The	Lorentz	term	XL can	be	
expanded,	in	terms	of	the	mean	
and	fluctuating	parts,	as		

+	(other	terms)	]
– first	term	for	the	restoring	force
– second	term	for	the	leading	

nonlinear	part

• The	sum	of	the	dominant			
restoring	and	nonlinear	terms	
reproduces	steepened	shapes

The	role	of	nonlinear	Lorentz	force

VMC(m=5)+Vadv

Vadv=z

where J = ∇×B is the electric current in the present scaling. The individual163

terms of the equations are denoted and rewritten as164

ΞR = ⟨u ·∇ξz − ξ ·∇uz⟩ = ∇h · ⟨ξzu− uzξ⟩,
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field, A. The integral in ΞC is performed by using the sloping boundary166

conditions, uz = ∓uss/H at z = ±H. We assume ∇ · ξ = ∇ · J = 0 as well167

as the solenoidal conditions (4a,b).168

To seek perturbations about a background state, we split the velocity and169

magnetic fields into their mean and fluctuating parts. Furthermore, to focus170

on the background state given by the axisymmetric component, we further171

separate the mean parts into axisymmetric and non-axisymmetric parts, such172

that173
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n
(s,φ, z) + b′(s,φ, z, t) . (10)

The averaging operators and fluctuating parts appearing here are defined by174
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1

τ
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1

2π
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Substituting (10) into the Lorentz term, ΞL, we find its individual terms:175
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(13)
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∂φ ⟩, and nonlinear, ⟨ b
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terms. The selected terms reproduce some features including steepened crests648

and troughs. We hence speculate that, although the linear theory is essential649

for explaining its wave speeds, the nonlinear Lorentz term is important for650

creating the observed waveforms. This will help us to study the fundamentals651

of the nonlinear dynamics, for example, by adopting reduced models.652

3.6. Space-time analysis of surface magnetic field653

We now address the question whether MR waves could be detectable in654

geomagnetic data. The westward drift is analysed using the radial component655

of the geomagnetic field, which is inferred at the top of the core (e.g. Finlay et656

al., 2010). The QG theory, when no boundary layers are taken into account,657

suggests that the internal wave motions at given s can be seen at the top658

at latitude ≈ arc cos (s/ro) in each hemisphere. Therefore one may expect659

identification of MR waves in the secular variation if the flow is sufficiently660

two-dimensional. Note that the geostrophy varies with the Ekman number E661

and the background magnetic field, which can be quantified by the Elsasser662

number Λ.663

Figure 12 depicts plots for space-time analyses of the radial magnetic664

field Br observed at the outer boundary r = ro in model 6.5R2, in which665

low E and Λ ≈ 2 give a well-defined geostrophy. These are analogous to the666

plots shown of the internal fluid motions discussed in sec. 3.2. To focus on the667

secular variation, we remove the time-averaged field in the analysis presented668

below. Figures 12a and b show the time azimuthal sections of the residual669

field B′
r at latitudes 60

◦N and 39◦N in the northern hemisphere, respectively.670

Here white dashed and solid black lines indicate, respectively, the calculated671

ζ and ζ + ω̂MR/m for m = 9 at the corresponding cylindrical radius s: the672

speeds at s = 0.5ro (0.77ro) can be seen in Fig. 1c and d. The frequency673

- wavenumber spectra are shown in Figs. 12c and d, in which white dashed674

and black solid curves represent the advective dispersion relation, ζm, and675

the total dispersion relation, ζm+ ω̂−, at both radii s, respectively.676

The spectrum at 60◦N is dominated by signals ofm ≈ 9 and 12 and f < 0;677

prograde modes of f > 0 also look significant. The predicted wave speed for678

m = 9 can fit some magnetic drifts observed in the physical domain. At lower679

latitude 39◦N drift patterns seemingly get noisier. As |ζ| goes up and VMR680

does down as s increases to 0.7, see (Fig. 1c-d), so flow advection becomes681
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Toroidal field	strength	within	the	Earth’s	core

• The	dispersion	relation	tells	us	about	
waves	riding	on	mean	flow	advection

– a	geomagnetic	drift	speed	of																		
0.56	º/yr at	40º	S	(Finlay	&	Jackson	2003)	

– suppose	a	mean	flow	of	0.24	º/yr
(Pais et	al.	2015)	

– Given	m=5,	this	implies	a	z-mean	
toroidal	field	Bf ~	12	mT at	s	~	0.8ro

• equivalent	to,	or	stronger	than,	the						
poloidal	field	Bs	≥	3	mT (Gillet	et	al.		2010)

– constrains	the	dynamo	mechamism?
• e.g.		a2-type	or	aw -type
• stronger	poloidal	fields	in	dynamo	
simulations
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In	thin,	stably	stratified	layers
• A stable	layer	at	the	top	of	the	Earth’s	core

– SW	models	applied	by	poloidal	field	(Braginsky
1984,	1999)

• Solar	tachocline at	the	bottom	of	the	
convection	zone
– SW	models	applied	by	toroidal	field	

(Gilman	2000;	Zaqarashvili et	al.	2007)		

– ~	3	m/s	westward	drifts	and	eastward	
wavetrains?	(McIntosh	et	al.	2017)	
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longitude, whereas a westward motion would slant from left to right and an  
eastward motion would slant, conversely, from right to left. In Supplementary  
Fig. 2, we show the fitted ellipses to the easily identified BP density clusters in  
the northern (red ellipses in Supplementary Fig. 2A; 95 in number) and southern 
solar hemispheres (red ellipses in Supplementary Fig. 2C; 67 in number) from  
the data presented in Fig. 3. We see that the vast majority of the clusters appear  
to slant left to right in both cases. To characterize the mean value of the slant  
of these clusters in each hemisphere, we present, in Supplementary Fig. 2B  
and D, histograms of the collected tilt angles (θ) converted into velocity  
(velocity =  tan θ =  range of cluster longitude / cluster lifetime; a velocity in  
radians per year is easily converted into metres per second). Fitting a Gaussian 
function to the tilt angle distributions (thick solid line) indicates a mean velocity  
of 3.25 (± 2.25) m s–1 in the northern hemisphere and 2.65 (± 1.6) m s–1 in the 
southern hemisphere. These mean values are shown in the figure as thick dashed 
vertical lines in the corresponding panel. These slow, non-zero, motions of  
the BP density clusters we identify with the westward phase velocity of the waves  
in each hemisphere of the Sun.

There appear to be other drifting patterns in the Hovmöller diagrams, but 
their determination in this dataset is difficult and probably not unique. From the 
reference lines shown in Fig. 3, we see that the 3 m s–1 (red dashed) line can allow 
us to associate many clusters as possibly belonging to a train; thus the disturbances 
could have a westward group velocity close to 3 m s–1. However, there may also be 
eastward-travelling trains of BP density clusters (see below).

We note that it is possible to detect such small velocities in data that have a 
low spatial resolution, of the order of hundreds of kilometres per image pixel in all 
three spacecraft, because the clusters of BPs persist for so long that we are able to 
characterize their collective motion.

Cluster properties. The ellipses identified in the process above provide us with 
information about the lifetimes of the events that give rise to the BP clusters, 
presumably magnetic flux emergence from the Sun’s interior, and their effect 
on coronal structure. In Fig. 4a, we show the histogram of cluster lifetimes, 
derived from the fitted ellipses. In both hemispheres, there are notable peaks at 
approximately 28 days and 56 days (or approximately one and two solar rotations), 
with the latter having about one-quarter the amplitude of the former. Similarly, 
we can infer (as shown in Fig. 4b) that there may be some spatial dependence in 
the clusters. For the sampled latitudes (and times), there appears to be a mean 
separation of clusters of ~65° in each hemisphere. These values seem to indicate 
that the approximate wavenumber of the disturbances observed in the EUV BP 
density is, on average, 5. In combination, these factors will be useful in subsequent 
theoretical efforts to study, in more detail, the wave modes that are present.

Wave group velocity estimation. In an effort to isolate this possible eastward 
disturbance, we average over a slightly broader range of latitudes to build  
the Hovmöller diagrams shown in Supplementary Fig. 3. Here the average  
is over a 5° wide range of latitudes centred on 12° (northern hemisphere)  
and 25° (southern hemisphere) to increase signal. We then cross-correlate the  
time series of BP density at any reference time with that 7 days (seven time steps) 
later, following a prescription for identifying apparent velocities in space–time 
plots20. The resulting cross-correlation function has a peak at the longitude  
that may correspond to the staggered progression of the moving wave train.  
A parabolic fit to the centroid of the cross-correlation function permits an  
estimate of the instantaneous velocity for that time to be computed (again,  
velocity =  longitude/time). Repeated for all time steps, we see the variation  
of the instantaneous velocities in Supplementary Fig. 3B and E, in which the 
colour-coding of the points indicates the amplitude of the fitted cross-correlation 
function. Supplementary Fig. 3C and F shows the histograms of the instantaneous 
velocities, where the cross-correlation peak is greater than 0.9. A Gaussian 
function is fitted to the histograms (thick red line) to reveal the mean and standard 
deviation of the apparent motions in the diagram for each solar hemisphere  
at the selected latitudes. The value of this apparent eastward-travelling motion, 
possibly the group velocity of the wave, is ~24 m s–1 (24.4 ±  15.3 m s–1 in the  
north and 23.8 ±  20.8 m s–1 in the south) and motivates the white dashed lines 
drawn on Fig. 3. However, we note that a dataset that could discriminate  
between magnetic polarities of features covering the Sun, rather than one 
impacting EUV brightness of the corona, could resolve this issue.

Data availability. The imaging data used in this paper are freely available  
from the STEREO and SDO mission archives and the Virtual Solar  
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diagrams presented are longitude (abscissa) and time (ordinate) for fixed latitudes. 
In other words, they are space–time plots that illustrate the evolution of a spherical 
dynamical system over a narrow range of latitudes, in which the resulting circular 
band of information represents the complete longitudinal evolution of the system 
with time. These diagrams were used to illustrate the global migration of pressure 
ridges and seasonal rainfall migration patterns across the world when computer-
aided animations of the Earth’s spherical system were not possible. Slanting straight 
lines in a Hovmöller diagram, like any space–time plot, indicate a succession  
of disturbances that are propagating.

Hovmöller diagrams constructed from the combined STEREO/EUVI and 
SDO/AIA BP density data are shown in Fig. 3 with two dashed lines. The red 
dashed lines represent the apparent phase velocity of the clusters of BP density,  

and the white dashed line is a representation of the group velocity of those  
clusters, although this dataset makes definitive determination of the latter difficult. 
In the following paragraphs, we will discuss the method used in the derivation  
of these slopes.

Wave phase velocity estimation. Estimation of the apparent phase velocity of the 
wave can be derived from the inclination angle of the clusters in the Hovmöller 
diagrams. Following the identification and isolation of distinct regions of BP 
density that exceed the value of 5 BP per day per degree, we numerically fit an 
ellipse to the enclosed cluster of points to measure their lifetime and the tilt 
angle subtended by the cluster to the vertical. The tilt angle provides a measure 
of velocity: a cluster that is parallel to the ordinate demonstrates no motion in 
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e.g.	equatorial	waves	(cartesian)
• b-plane	shallow	water	models	applied	by	an	azimuthal	field

• when	f	~	by,

– cf.	nonmagnetic	case	(e.g.	Matsuno 1966)	:	
• a	Schroedinger eq.
• oscillatory	for	|y|	<	yc,	i.e.	equatorially	trapped	waves	

– In	the	presence	of	magnetic	field
• nonzero	VA increases	yc,	i.e.	releasing	the	trapped	waves
• large	VA gives	rise	to	a	Bessel	eq.

ver.1.1 April 6, 2016 KH

2.3 nonaxisymmetric, low-latitude

When βy ≫ f0,
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This is a Schrödinger equation (nonlinear, second-order ODE, homogeneous): oscillatory solutions
when |y| < |yc| and evanescent solutions when |y| > |yc|, where the critical latitudes yc is given as
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This determines how the waves are trapped to the equator.

• for large C2
0/β

2, i.e., for small ϵ = 4Ω2
0R

2
0/(gH0):
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if ω2 ! k2
xv

2
A, then y2

c < 0; there’s no critical latitude, i.e. equatorially trapped wave
if ω2 " k2

xv
2
A, a critical latitude can exist; equatorially trapped waves are preferred with a

stronger field

• for small C2
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c < 0; there’s no critical latitude, i.e. equatorially trapped wave

[Q: consistent with the spherical analysis?]

With the boundary conditions uy → 0 when y → ±∞, the coefficients must satisfy
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So the equatorial waves can exist when ω2 > k2
xv

2
A (fast modes). The solutions (see 22.6.20 in

Abramowitz & Stegun (1964)) are given as

uy = 2−n/2Hn(y∗) exp (−y∗2/2) cos(kxx − wt) (44)
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with the Hermite polynomial of the n-th order,

Hn(x) = (−1)nex2 dn

dxn
e−x2

(46)

odd n(= 1, 3, ..) representing uy equatorially symmetric; even n(= 2, 4, ..) representing uy equato-
rially anti-symmetric
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from the requirement that B is parallel to the upper free surface,
takes the form (Gilman 2000)

∇·(HB) = 0. (4)

A general feature of the large-scale dynamics in such a system
is that it does not significantly depend on the chosen geome-
try (flat, spherical or cylindrical) for equatorially trapped waves
(Longuet-Higgins 1965; Pedlosky 1987). However, the consid-
eration of spherical geometry is desirable for waves with wave-
length comparable to the size of the sphere. Therefore, we first
study the problem in the simpler Cartesian coordinates and then
turn to the more complicate spherical geometry.

3. Cartesian coordinates

We consider a local Cartesian coordinate frame (x, y, z) in which
the x axis is directed towards the rotation, the y axis is directed
towards the north pole of the sphere and the z axis is directed
vertically.

Let us next consider that the unperturbed magnetic field,
(Bx, 0, 0), is directed along the x axis. Then, after linearizing
Eqs. (1)–(3) their components are written in the rotating frame as
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)
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where ux, uy, bx and by are the velocity and magnetic field pertur-
bations, h = H−H0 is the perturbation of the layer thickness and
f = 2Ω0 sinΘ is the Coriolis parameter (withΘ the latitude). For
zero magnetic field this system transforms into the HD shallow
water equations (Pedlosky 1987).

Differentiation with respect to time of Eqs. (5)–(6) and using
Eqs. (7)–(8) gives
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where vA = Bx/
√

4πρ and C0 =
√
gH0 are the Alfvén and surface

gravity speeds, respectively.
We now perform a Fourier analysis of the form exp (−iωt +

ikxx) and after some algebra obtain
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When vA = 0 this equation governs the linear dynamics of vari-
ous kinds of waves (namely Poincaré, Kelvin and Rossby waves)
in the HD shallow water approximation (Pedlosky 1987), but the
inclusion of the magnetic field leads to the modification of the
wave modes.

At a given latitude, Θ0, one can perform a Taylor expansion
of the Coriolis parameter and retain the lowest order latitudinal
variation of f , which leads to (Pedlosky 1987; Gill 1982)

f = f0 + βy, (12)

where the parameter

β =
2Ω0

R0
cosΘ0 (13)

(with R0 the radius of the sphere) plays a major role in the so
called β-plane approximation. Away from the equator βy ≪ f0
and therefore from Eq. (11) we readily get
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Thus, we can now perform a Fourier analysis of the form
exp (ikyy), which gives the dispersion relation
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This dispersion relation contains high and low frequency
branches, which respectively correspond to magneto-gravity
waves and to Alfvén and Rossby waves. Note that for β = 0 this
dispersion relation transforms into that of f -plane MHD “shal-
low water” waves (Schecter et al. 2001).

We next concentrate in the case of small Alfvén speed, i.e.
vA ≪ C0, such as corresponds to the interiors of solar-like
stars. Then, the high frequency branch of Eq. (15) contains
Poincaré waves, whose dispersion relation is (Pedlosky 1987)
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while the low frequency branch yields the dispersion relation
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2
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Note that the dispersion relation (17) was first obtained by Hide
(1966) in the two dimensional case (see also Acheson & Hide
1973). This formula reveals some interesting properties. For
short wavelengths, i.e. large kx, the last term in Eq. (17) dom-
inates over the second one, which leads to the solution

ω = ±kxvA. (18)

This is the dispersion relation of pure Alfvén waves unaf-
fected by rotation and propagating eastward and westward in the
toroidal direction.

Nevertheless, for large-scale motions pure Alfvén waves no
longer exist and instead we have Rossby waves modified by the
magnetic field. For large wavelengths, i.e. small kx, Eq. (17) has
two different solutions. For the high frequency solution one can
easily recover the dispersion relation of HD Rossby waves,

ω ≈ − kxβ

k2
x + k2

y

· (19)

For the low frequency solution we have the dispersion relation

ω ≈
kxv2A(k2

x + k2
y)

β
· (20)
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Slow Magnetic Rossby waves

These slow waves are in hydromagnetic equilibrium, so inertial
term in the equation of motion is negligible. Time-dependence
only in induction equation.

Frequency goes to zero as ↵ goes to zero, so this branch doesn’t
exist in non-magnetic case.

When ↵ and ✏ are small, eigenfunction are spherical harmonics and

! =
mv2

a

2⌦0R2
0

(n(n + 1)� 2),

so they travel eastwards. The n = 1 mode is anomalous, and
travels very slowly westwards.

Note that magnetic Rossby waves in a full sphere travel westwards.

At large ↵, slow magnetic Rossby waves become polar trapped,
and travel at nearly the same speed as the polar trapped fast
magnetic Rossby waves, going east rather than west.

(4.5) Shallow water MHD model 66/69

In	spherical	shells
• Nonaxisymmetric MAC	waves	classified:	

– inertio-gravity	
– Rossby
– Kelvin	

• Rossby:	for	eq.symmetric Bf =	B0	sin	q   
(Marquez-Artavia et	al.,	2017)

– fast	modes
• goes	westward
• in	the	limit	VM

2/Vc2 <<	1,

– slow	modes
• goes	eastward
• in	the	limit	VM

2/Vc2 <<	1,
• slowly	westward	for	n=m=1

– even	polar	trapped	at	large	VM
2/Vc2

– become	unstable	at	large	VM
2/Vc2

Slow Magneto Rossby Waves for m = 1

Scaled height η (Waves travelling Eastward).

Xiomara Márquez-Artavia

Rotating Magnetic Shallow Water Waves in a Sphere

Fast Magneto Rossby Waves for m = 1

Scaled height η (Waves travelling Westward).

Xiomara Márquez-Artavia

Rotating Magnetic Shallow Water Waves in a Sphere

Eigenfunctions of fast / slow MR waves 
for m=1, a (~VM

2/Vc
2) = 0.1, e-1 (~ VA

2/Vc
2) = 0.01

Fast Magnetic Rossby waves

At small ✏ we have Rossby waves as well as MIG waves. These
have frequency O(⌦0), and spherical harmonic solutions. The term
@⌘/@t drops out of the mass conservation equation.

They travel westwards, and at small ↵

! = � 2⌦0m

n(n + 1)
.

At large ✏ they turn into equatorially trapped waves, described by
parabolic cylinder functions.

As ↵ increases, at ↵ = 0.5, � = �0.5m. For ↵ > 0.5, they become
super-Alfvénic.
At large ↵ they become polar trapped, described by Whittaker’s
equation, with associated Laguerre function solutions.

(4.5) Shallow water MHD model 64/69



Summary	

• Geo-/Jovian	dynamo	simulations	are	supporting	the	
excitation	of	magnetic	Rossby waves	for	incompressible/		
anelastic fluids

– crests/troughs	going	retrogradely on	timescales	of	O(101-2 yrs)	
in	the	Earth’s	core,	about	mean	zonal	flows

– excited	when	torsional	Alfven	waves	were	excited
• for	strong-field	dynamos	(Pm	>=5	or	E	=<	10-4;	L >~	2)

– the	speeds	accounted	for	by	the	linear	theory,	but	their	
waveforms	steepened,	likely	due	to	nonlinear	Lorentz	terms

– their	speeds	potentially	revealing	the	strength	of	the	‘hidden’	
toroidal	field

– induced	by	topography	but	also	by	compressibility



Thank	you



• In	spheres
– e.g.		for	Malkus field	(1967)

Bf =	B0 s	ef

– the	solution,	P=Pnm(µ)	Pnm(µ)	
– equatorially	trapped	for	for	small	n
– even	(n-m):	eq.symmetric (QG)	modes	

• goes	retrograde	&	faster	(≈ −wM
2/wb)	

– odd	(n-m):	eq.anti-symmetric	modes	
• goes	prograde &	slower	(≈ +wM

2/wI)

– cf.	MC	waves	in	simple	plane	layers
• slow	modes	has	no	preference	in	propagation	
direction	(≈±wM

2/wC)
• The	geometrical	effect	splits	the	modes	into	a	
faster	&	slower	ones	

QG	vs.	non-QG	modes
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Eigenfunctions for Malkus field (after Malkus 1967)


