Planet-D mission to Venus in the future

Masato Nakamura, Nobuaki Ishii, Atsushi Yamazaki, Tomoaki Toda, Ryoma Yamashiro*, Yoshifumi Futaana,

Naoki Terada, Sanjay Limaye

Example images taken by Akatsuki cameras (IR1, IR2, UVI, LIR)

Mission to Lagrange points

Lyapunov orbit or

Lissajous orbit or
Halo orbit
around Lagrange points

Planet-D concept

VENUS

SUN

Night side imaging

Day side imaging

- We will be able to watch both dayside and nightside simultaneously
- We need much more IR2 images at nightside (1643 images << 31,444 LIR images from Akatsuki)

The orbits around Venus L1 and L2

To make angle to the Venus 25deg, the semimajor axis must be under 0.5 M km .
Because Halo orbit has minimum length for z direction in theory, Lissajous orbit is preferable.
(The graph above is for Sun-Earth L-point)

Sequence to orbital insertion

1. Insertion to elliptical orbit by Epsilon S (*1) + Kick Stage (*2)
2. Transfer to Earth-Venus interplanetary trajectory
3. Transfer to Venus L1 Lissajous orbit
4. Planet-D2 separation from Planet-D1
5. Planet-D2 Transfer to Venus L2 Lissajous orbit
6. Station keeping of Planet-D1 around Venus L1 and Planet-D2 around Venus L2

*1 Epsilon S: Improvement of the current Epsilon Launch Vehicle Development started in 2020
*2 Kick Stage: Under development for Destiny+

Launch period

The launch opportunity comes every 584 days, the period of Venus' meeting with Earth.
However, since the orbital planes of Venus and Earth are tilted, the optimal timing comes every 8 years (about 2920 days $\fallingdotseq 5$ times the meeting period).

If sufficient development time is kept, the optimal period is autumn 2032. However, considering the risk of development delays, the provisional target is spring 2031. Since this is a point-to-point analysis, it is necessary to examine detailed elements such as Right Ascension of Ascending Node.

PLANET-D Configuration (without mission devices)

Delta V Estimation

- Results of the analysis

Earth
Launch Vehicle (+ Kick Stage)
orbit: alt. $230 \times 37000 \mathrm{~km}$

Δ Vevt ($1460 \mathrm{~m} / \mathrm{s}$) by OMC
Earth-Venus transfer orbit
$\Delta \mathrm{Vs}(200 \mathrm{~m} / \mathrm{s})$ by OMC
Venus flyby at 400km altitude $\Delta \mathrm{VL}(520 \mathrm{~m} / \mathrm{s})$ by OMC

Attitude control by RCS
(200m/s)

Probe
Propulsion

\Rightarrow probe total mass $=480 \mathrm{~kg}$ $\Delta V=2500 \sim 2800 \mathrm{~m} / \mathrm{s}$
($\Delta \mathrm{V}$ by OMS $=2200 \sim 2600 \mathrm{~m} / \mathrm{s}$)

Propellant Selection for OMS

NTO/N2H4 is preferable for OMS Propellant in the range of $\Delta \mathrm{V} 2200 \sim 2600 \mathrm{~m} / \mathrm{s}$. (see right figures)

	N2H4		NTO/N2H4	
$\Delta V[m / s]$	2200	2600	2200	2600
Propellant Mass [kg]	320	355	250	280
Dry Mass [kg]	160	125	230	200
Sum [kg]	480	480	480	480

*Dry mass in this page means the mass except OMS propellant

Mass distribution based on NTO/N2H4 OMS system is as below.

OMS
(for D1\&D2 Orbit Maneuver)

Contents		Mass [kg]		notes
		for OMC $\Delta V=2200$ m / s	for OMC $\Delta V=2600$ m / s	
D1	Mission devices	16	16	LIR, UVI, LAC, PIM
	Bus Structure/devices	30*	30*	Power, Communication, A/O control
	Propulsion devices	91	99	OMS, RCS
	Propellant	294	324	NTO,N2H4
D1 Sum		430	469*	
D2	Mission devices	26	26	LIR, IR2, LAC, PIM
	Bus Structure/devices	15*	15*	Power, Communication, A/O control
	Probes Separation System	1	1	
	Rocket I/F	1	1	
	Propulsion devices	5	5	RCS
	Propellant	2	2	N2H4
D2 Sum		50	50	
D1 + D2 Sum		480	519*	Launch capacity is 480 kg

[^0]
Current Issues

1. $\Delta \mathrm{V}$ optimization

- Acceleration timing
- Swing-by
- Tolerance to Z-direction amplitude in Lissajous orbit

2. Mass distribution

- Refinement of bus structure/devices
- Updating of devices information
- Redistribution of D1/D2 function

Figure 5: Numerical construction of Planck orbit

Image by the paper: Optimization for Lissajous Orbit

Optional Instruments for ion escape

- Solar EUV monitor
- Fluxgate magnetometer

Summary

- We need to plan a new generation Venus mission after Akatsuki.
- Russia is planning Venera-D in 2029 and Lagrange point mission (India plans something)
- ISAS has a heritage of Akatsuki 5 cameras and easy to put them to the new mission, Planet-D.
- Planet-D consists of two spacecraft inserted into Lagrange points, L1 and L2 and look at the dayside and nightside hemisphere. UVI, LIR and IR2 are the candidate cameras onboard the spacecraft.
- Launch by Epsilon launch vehicle is assumed.
- Ion escape may be imaged during one spacecraft's moving from L1 to L2.

[^0]: *necessary to improve

