予想外に温かい

中川広務¹, S. Jain², F. Montmessin³, R. Yelle⁴, N. M. Schneider², F. Jiang⁴, L. Verdier³, 黒田剛史¹, 吉田奈 央¹, 藤原均⁵, 今村剛⁶, 寺田直樹¹, 寺田香織¹, 関華奈 子⁶, H. Gröller⁴, J. I. Deighan², M. Christmani² (1)Tohoku Univ., (2)LASP, Univ. Colorado, (3)LATMOS, (4)Univ. Arizona, (5)Seikei Univ., (6)Univ. Tokyo

惑星大気オンラインセミナ, June. 9, 2020

• 火星中間圏は冷たいというのが,従来の認識.

近年の新しい描像1(上から)

• 外部由来の金属層や太陽光エネルギー粒子(SEP)が侵入

近年の新しい描像2(下から)

• 下層大気からダストや水蒸気が高速輸送で侵入.

近年のMEX,MAVEN観測で上下結合の理解が急速に進む.

Fig. Nakagawa, Astrobiology, Springer, 2019.

- NASA火星探査衛星MAVEN搭載紫外撮像分光器IUVSによる最新の星掩蔽観測によって、予想外に温かい大気層を発見したので、その特徴を報告
- 詳しい内容は, Nakagawa et al., GRL, 2020を参照
- その生成メカニズムについて、もう少したちいった議論
 を試みる

観測: 星掩蔽観測MAVEN

夜側の188高度分布 (2015年3月から2018年4月までの19キャンペーン,季節Ls=0-180に限定).

Campaign	Date	Ls	Used profiles
#3	1-2 Aug 2015	22	11
#5	3-4 Nov 2015	64	15
#7	17-18 Mar 2016	124	25
#8	26-27 May 2016	159	3
#14	14-15 Jun 2017	19	17
#15	5-7 Jul 2017	29	28
#16	8-9 Oct 2017	71	27
#17	6-8 Dec 2017	97	25
#18	7-9 Feb 2018	126	12
#19	11-12 Apr 2018	157	25

- 観測波長110-340 nm: CO₂, 大気温度, O₂,O₃, エアロゾルを導出.
- 本研究では, 高度20-140 km (分解能2-10 km)の温度分布.

Fig. Groller et al., 2018.

• モデルより最大で90 K高い(ときに200Kを超える場合も)

*Fig. CO*² *number density and temperature profiles with MCD prediction.*

Fig. Temperature profiles with MCD prediction(left). The geometric locations of warm layers in Ls=0-180 (right).

• 温暖層はLs=0-180において赤道から夏半球低緯度に

Fig. Latitude-altitude cross-section of zonally averaged temperature over *Is=0-180* by 5km and 5°.

経度方向に特徴的な極大構造

Fig. Longitude-altitude cross-section of averaged temperature over Ls=0-180 in 00-50N lat(a) and 50S-00 lat(b) by 5km, 5°.

Wave-3が卓越,モデル予測も

Fig. Longitudinal variation of temperature in the altitudes 75-85 km with the MCD.

• 強い温度反転は大気不安定を生み, 上方伝搬波動を砕破

Fig. Temperature profiles and buoyancy frequency acquired by MAVEN/IUVS stellar occultations.

- Mesospheric Inversion Layer (MLI); 2000年前後にいく
 - つか論文が出版,主にNaライダー温度観測(例えば,

Meriwether and Gardner, JGR, 2000).
中間圏界面での温度の高度分布に極大が現れる

- 潮汐が背景の温度場を作って、そこに重力波などの影響でできるというのが共通認識
- しかし完全にわかっていない;時間変化,緯度分布が説
 明不十分

- VEX観測で2007年に報告 (Bertaux et al., 2007)
- 夜側での下降流による断熱加熱という解釈 (立証無し).

Fig. Bertaux et al., Nature, 2007.

火星 Polar warmingの要因

- MRO/MCSによって発見 (McCleese et al., 2008).
- 子午面循環における極域での下降流による断熱加熱でできるというのが共通認識 (全経度からの循環だから強烈).
- 大気波動(特に小規模重力波)による砕破・背景速度場へのドラッグ効果が,夏冬半球をまたぐ子午面循環に重要な役割を担う (Medvedev et al., 2011など).

Warm layerの要因は?

- MCDとの比較からわかること; メカニズムはMCDと同じ? ただし振幅が足りない
- GWによる加熱? (Medvedev and Yigit, 2012); GWモデル を走らせないとわからないTBD
- 熱潮汐振幅を強めるand/orモデルには無い昼夜間対流を引き起こす追加の昼側加熱? モデルに含まれていない高高度 エアロゾル層や金属層はどう影響? (Montmessin et al., 2006; Crismani et al., 2017)
 NO大気光観測は, 昼側下部熱圏から夜側中間圏への大循

環を示唆(NとOが昼生成,夜で再結合) (Stiepen et al., 2017)

- MAVEN昼側観測の別解析でも高度90-110 kmに温度昇温 が見られることが確認されたので確からしい(200 Kを超 える) (S. Evans et al., private com.)
- ただし、特徴は夜側のそれとは異なる (夏冬いずれにもみられる, Wave-3は明瞭で無い etc)
- GCM予測によれば、下層から上方伝搬する半日潮汐が中間圏温暖層に重要な役割を担っていそう (J. Wilson et al., private com.),より高高度ではEUV直接加熱が潮汐の駆動に重要 (cf. 中間圏で直接加熱は無いGCM)

Fig. 1. Dominant neutral winds observed using NGIMS during 33 monthly campaigns from April 2016 to December 2018. The average neutral winds are shown as whiskers. The magnitude of their orbitto-orbit variability are reflected in the whisker colors. The orbit-to-orbit variability of the winds for a given location is captured by the GCV (color bar). No variability is assessed for campaigns that involved a single orbit (black whiskers of C#1. 13. 16. and 23). The MAVEN ground tracks are shown

Fig. Benna et al., Science, 2019; Rotten et al., JGR, 2019.

大循環に伴う組成非一様

- ・熱圏対流に伴う上昇流・下降流は, He bulgeなど軽い分

 子の非一様を生み出す ("Wind-induced diffusion")
- O2も同様(光乖離によるO生成/昼O2減少, Oの昼→夜移流, 再結合/夜O2増加)
- 地球, 金星, 火星で共通して観測されている; 地方時依存性, 夏冬依存性 (例えば, Reber and Hays, 1973; Kumar et al., 1978; Niemann et al., 1980; Allen et al., 1981; Liu et al., 2014; Elrod et al., 2016)
- 鉛直流が存在すれば、組成比非一様が生じるはず

- •火星中間圏は、下層・宇宙から影響を受ける遷移領域
- 従来冷たいと考えられていた火星中間圏夜には,予想外に温かい大気層が存在し,ときには200 Kを超える.
- 高度80kmで赤道~夏半球低緯度に広がり,波数3構造が顕著
- 火星年前半に限らず,後半にも年間通じて観測
- 関連性は不明なものの,地球・金星にも類似現象あり
- 潜在的要因である熱圏/中間圏にかけての昼夜間対流について 考察,同高度の昼夜大気組成非一様を形成しうるだけの潜在的 な鉛直フラックスは存在しうるかもしれない;要詳細検討