# 大気と海洋の波動エネルギーのライフサイクル解析 による熱帯気候変動メカニズムの解明

- 相木秀則、福富 慶樹 (名大宇宙地球環境研究所)
- 菅野 湧貴 (電力中央研究所)
- 尾形 友道 (海洋研究開発機構)
- 豊田 隆寛、中野英之 (気象庁気象研究所)

2020.12.16 15:30-16:30



### 衛星観測海面高度偏差10年分



過去20年間のモデル診断研究:どこで擾乱が励起・減衰するのか? ・ エネルギー変換率の全球分布の診断

将来のモデル診断研究:どこからどこへ「何が」擾乱を運ぶのか?

- ・慣性重力波のエネルギーフラックスはモデル診断研究が豊富
- ・中緯度惑星波や赤道波のエネルギーフラックスはあまり研究されていない



海洋のプロセス毎の全球エネルギー収支

YJ=10<sup>24</sup>J=ヨッタジュール EJ=10<sup>18</sup>J=イクサジュール

#### Wunsch and Ferrari, 2004 ARFM

TW=10<sup>12</sup>W=テラワット



過去20年間のモデル診断研究:どこで擾乱が励起・減衰するのか? ・ エネルギー変換率の全球分布の診断

将来のモデル診断研究:どこからどこへ「何が」擾乱を運ぶのか?

- ・慣性重力波のエネルギーフラックスはモデル診断研究が豊富
- ・中緯度惑星波や赤道波のエネルギーフラックスはあまり研究されていない





大気と海洋の様々な長周期(季節内~季節間スケール)波動は熱帯域の気候 変動現象(MJO/ENSO/IOD)の発達・終息において重要な役割を担う

これらの波動を解析する際に従来の準地衡流近似に基づく診断理論は中緯度 域と熱帯域の接続を整合的に取り扱えないという問題があった

### A/OGCMの出力から群速度ベクトルを計算するための診断表式

|                                           | Plumb (1986) ,                                         | Orlanski &                                                                          |  |  |
|-------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------------------|--|--|
|                                           | Takaya & Nakamura                                      | Sheldon (1993)                                                                      |  |  |
|                                           | (2001)の系列                                              | の系列                                                                                 |  |  |
| 対象                                        | 波活動度 (擬運動量)                                            | エネルギー                                                                               |  |  |
| 定量的解析                                     | 不適                                                     | 適                                                                                   |  |  |
| 中緯度ロスビー波                                  | $\bigcirc$                                             | $\bigcirc$                                                                          |  |  |
| 中緯度慣性重力波                                  | ×                                                      | ×                                                                                   |  |  |
| 全ての種類の赤道波                                 | ×                                                      | ×                                                                                   |  |  |
| 中緯度と熱帯の接続                                 | ×                                                      | ×                                                                                   |  |  |
| 海岸線境界条件                                   | ×                                                      | ×                                                                                   |  |  |
| 前処理                                       | 必要なし                                                   | 必要なし                                                                                |  |  |
|                                           |                                                        |                                                                                     |  |  |
| フラックスの診断式                                 | $\langle E - \overline{v'v'}, \overline{v'u'} \rangle$ | $\overline{\boldsymbol{u}'p'} + \nabla \times [\overline{p'p'\boldsymbol{z}}/(2f)]$ |  |  |
| 表1:A/0GCMのアウトプットから群速度ベクトルを計算するための診断式の比較 F |                                                        |                                                                                     |  |  |

φ



Aiki et al. (2017, PEPS)によってエネルギーフラックスの診断式のブレークスルーが もたらされた。これは大気海洋中の擾乱エネルギーのライフサイクル(発達・伝達・消 散過程)を緯度帯の制限なくトレースするための強力なツールである。

これによって擾乱エネルギーの流れを可視化して定性的に理解するだけでなく、厳密な 定量化により各力学過程の最重要なものを明確化することができる。

熱帯と中緯度の波動をその相互作用も含めて連続的にトレースすることで、熱帯の主要 な気候変動イベントの発達・終息メカニズムを解明する。



$$\begin{aligned} u'_t - fv' + p'_x &= 0 \\ v'_t + fu' + p'_y &= 0 \\ p'_t + c^2(u'_x + v'_y) &= 0 \end{aligned} \begin{aligned} E &\equiv [u'^2 + v'^2 + (p'/c)^2]/2 \\ q' &\equiv v'_x - u'_y - (f/c^2)p' \end{aligned}$$

中緯度慣性重力波についての群速度×エネルギーの診断式

 $\partial_t \overline{E} + \nabla \cdot \langle\!\langle \overline{u'p'}, \overline{v'p'} \rangle\!\rangle = 0$ 

回転成分が 謎めいた表現

(赤道域で破綻)

中緯度惑星波についての群速度×エネルギーの診断式 (Orlanski and Sheldon, 1993 JAS)

$$\partial_t \overline{E} + \nabla \cdot \langle\!\langle \overline{u'p'} + [\overline{p'^2}/(2f)]_y, \overline{v'p'} - [\overline{p'^2}/(2f)]_x\rangle\!\rangle = 0$$

中緯度と赤道域のすべての中立波 (Aiki et al. 2017 PEPS)

$$\nabla^{2}\varphi - (f/c)^{2}\varphi - (3/c^{2})\varphi_{tt} = q'$$
  
$$\partial_{t}\overline{E} + \nabla \cdot \langle \langle \underbrace{\overline{u'p'} + (\overline{p'\varphi}/2 + \overline{u'_{tt}\varphi}/\beta)_{y}}_{=c_{g}\overline{E}}, \overline{v'p'} - (\overline{p'\varphi}/2 + \overline{u'_{tt}\varphi}/\beta)_{x} \rangle \rangle = 0$$

Aiki et al. 2017 PEPS

波のエネルギーの水平伝達経路を群速度に基づいて気候学的に同定するには? フーリエ解析やレイの式に頼らない「モデル診断手法」の提案 一赤道導波管と東岸導波管の接続問題(熱帯亜熱帯相互作用)にも適用可一

中緯度慣性重力波についての群速度×エネルギーの診断式

回転成分が 謎めいた表現

 $\partial_t \overline{E} + \nabla \cdot \langle\!\langle \overline{u'p'}, \overline{v'p'} \rangle\!\rangle = 0$ 

(赤道域で破綻)

中緯度惑星波についての群速度×エネルギーの診断式 (Orlanski and Sheldon, 1993 JAS)

$$\partial_t \overline{E} + \nabla \cdot \left\langle \! \left\langle \overline{u'p'} + \left[ \overline{p'^2} / (2f) \right]_y, \overline{v'p'} - \left[ \overline{p'^2} / (2f) \right]_x \right\rangle \! \right\rangle = 0$$

本研究:各種赤道波だけでなく中緯度惑星波や中緯度惑星波についての診断式

$$\nabla^{2}\varphi - (f/c)^{2}\varphi - (3/c^{2})\varphi_{tt} = q'$$
  
$$\partial_{t}\overline{E} + \nabla \cdot \langle \langle \underbrace{\overline{u'p'} + (\overline{p'\varphi}/2 + \overline{u'_{tt}\varphi}/\beta)_{y}}_{=c_{g}\overline{E}}, \overline{v'p'} - (\overline{p'\varphi}/2 + \overline{u'_{tt}\varphi}/\beta)_{x} \rangle \rangle = 0$$

シームレス機能(全ての緯度帯)

オートフォーカス機能(全ての種類の波)

### A/OGCMの出力から群速度ベクトルを計算するための診断表式

|                                                                   | Plumb (1986) ,                                                    | Orlanski &                                                                          | <u>Aiki</u> et al. (2017)                                 |  |  |
|-------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------|--|--|
|                                                                   | Takaya & Nakamura                                                 | Sheldon (1993)                                                                      |                                                           |  |  |
|                                                                   | (2001)の系列                                                         | の系列                                                                                 |                                                           |  |  |
| 対象                                                                | 波活動度 (擬運動量)                                                       | エネルギー                                                                               | エネルギー                                                     |  |  |
| 定量的解析                                                             | 不適                                                                | 適                                                                                   | 適                                                         |  |  |
| 中緯度ロスビー波                                                          | $\bigcirc$                                                        | $\bigcirc$                                                                          | $\bigcirc$                                                |  |  |
| 中緯度慣性重力波                                                          | ×                                                                 | ×                                                                                   | $\bigcirc$                                                |  |  |
| 全ての種類の赤道波                                                         | ×                                                                 | ×                                                                                   | $\bigcirc$                                                |  |  |
| 中緯度と熱帯の接続                                                         | ×                                                                 | ×                                                                                   | $\bigcirc$                                                |  |  |
| 海岸線境界条件                                                           | ×                                                                 | ×                                                                                   | $\bigcirc$                                                |  |  |
| 前処理                                                               | 必要なし                                                              | 必要なし                                                                                | Ertel渦位の                                                  |  |  |
|                                                                   |                                                                   |                                                                                     | インバージョン                                                   |  |  |
| フラックスの診断式                                                         | $\left\langle E - \overline{v'v'}, \overline{v'u'} \right\rangle$ | $\overline{\boldsymbol{u}'p'} + \nabla \times [\overline{p'p'}\boldsymbol{z}/(2f)]$ | $\overline{u'p'} + \nabla \times (\overline{p'\phi'}z/2)$ |  |  |
| 表1:A/0GCMのアウトプットから群速度ベクトルを計算するための診断式の比較。 $E$ は波のエネルギー, $\sigma$ は |                                                                   |                                                                                     |                                                           |  |  |

Ertel渦位のインバージョン(逆計算)によって得られる流線関数を表す.

### Comparison of 3 Schemes for diagnosing group-velocity-based transfer routes



**color:** zonal component of energy flux **arrows:** energy flux vector **contour:** energy input

# New (AGC-L2) energy flux visualized by Helmholtz decomposition



Li and Aiki 2020 GRL Song and Aiki 2020 JGR Ogata and Aiki 2019 SOLA

# Fourier 解析における空間領域分割の概念図





ビデオに移動



EPV (Eulerian potential vorticity)の保存式

$$\begin{aligned} \frac{\partial}{\partial t^*} Q^* + v^* \frac{\partial}{\partial y^*} Q_0^* + w^* \frac{\partial}{\partial z^*} Q_0^* &= 0, \\ Q^* &\equiv \left(\frac{\partial v^*}{\partial x^*} - \frac{\partial u^*}{\partial y^*}\right) \frac{1}{\rho_0^*} \frac{d\theta_0^*}{dz^*} + \frac{f^*}{\rho_0^*} \frac{\partial \theta^*}{\partial z^*}, \\ Q_0^* &\equiv \frac{f^*}{\rho_0^*} \frac{d\theta_0^*}{dz^*}, \end{aligned}$$

EPVとIPV (isentropic potential vorticity)の関係式

$$q^* = \frac{1}{(1/\rho_0^*)(d\theta_0^*/dz^*)} \Big[ Q^* + \Big(\underbrace{\frac{-1}{N^{*2}}\frac{\partial\Phi^*}{\partial z^*}}_{\equiv \zeta^*} \Big) \frac{\partial}{\partial z^*} Q_0^* \Big],$$

PV の保存式  
$$\frac{\partial}{\partial t^{*}} \left[ \frac{\partial v^{*}}{\partial x^{*}} - \frac{\partial u^{*}}{\partial y^{*}} + \frac{1}{\rho_{0}^{*}} \frac{\partial}{\partial z^{*}} \left( \frac{\rho_{0}^{*} f^{*}}{N^{*2}} \frac{\partial \Phi^{*}}{\partial z^{*}} \right) \right] + v^{*} \beta^{*} = 0,$$
$$\underbrace{= q^{*}}$$

波動エネルギーの保存式

中緯度慣性重力波、赤道ケルビン波

$$\frac{\partial}{\partial t^*} \frac{\rho_0^*}{2} \Big[ u^{*2} + v^{*2} + \frac{1}{N^{*2}} \Big( \frac{\partial \Phi^*}{\partial z^*} \Big)^2 \Big] + \nabla^* \cdot \langle \langle \rho_0^* \overline{u^* \Phi^*}, \rho_0^* \overline{v^* \Phi^*}, \rho_0^* \overline{w^* \Phi^*} \rangle \rangle = 0, \qquad \nabla^* \equiv \langle \langle \frac{\partial}{\partial x^*}, \frac{\partial}{\partial y^*}, \frac{\partial}{\partial z^*} \rangle \rangle$$

アスタリスクは 次元付きを表す

中緯度ロスビー波 (Orlanski and Sheldon, 1993)

$$\frac{\partial}{\partial t^*} \frac{\rho_0^*}{2} \left[ \overline{u^{*2} + v^{*2} + \frac{1}{N^{*2}} \left( \frac{\partial \Phi^*}{\partial z^*} \right)^2} \right] + \nabla^* \cdot \left\langle \left\langle \rho_0^* \left[ \overline{u^* \Phi^*} + \frac{\partial}{\partial y^*} \left( \frac{\Phi^{*2}}{2f^*} \right) \right], \rho_0^* \left[ \overline{v^* \Phi^*} - \frac{\partial}{\partial x^*} \left( \frac{\Phi^{*2}}{2f^*} \right) \right], \rho_0^* \overline{w^* \Phi^*} \right\rangle \right\rangle = 0,$$

波動エネルギーの保存式

中緯度慣性重力波、赤道ケルビン波

$$\frac{\partial}{\partial t^*} \frac{\rho_0^*}{2} \Big[ u^{*2} + v^{*2} + \frac{1}{N^{*2}} \Big( \frac{\partial \Phi^*}{\partial z^*} \Big)^2 \Big] + \nabla^* \cdot \langle \langle \rho_0^* \overline{u^* \Phi^*}, \rho_0^* \overline{v^* \Phi^*}, \rho_0^* \overline{w^* \Phi^*} \rangle \rangle = 0, \qquad \nabla^* \equiv \langle \langle \frac{\partial}{\partial x^*}, \frac{\partial}{\partial y^*}, \frac{\partial}{\partial z^*} \rangle \rangle$$

中緯度ロスビー波 (Orlanski and Sheldon, 1993)

$$\frac{\partial}{\partial t^*} \frac{\rho_0^*}{2} \left[ \overline{u^{*2} + v^{*2} + \frac{1}{N^{*2}} \left( \frac{\partial \Phi^*}{\partial z^*} \right)^2} \right] + \nabla^* \cdot \left\langle \left\langle \rho_0^* \left[ \overline{u^* \Phi^*} + \frac{\partial}{\partial y^*} \left( \frac{\overline{\Phi^{*2}}}{2f^*} \right) \right], \rho_0^* \left[ \overline{v^* \Phi^*} - \frac{\partial}{\partial x^*} \left( \frac{\overline{\Phi^{*2}}}{2f^*} \right) \right], \rho_0^* \overline{w^* \Phi^*} \right\rangle \right\rangle = 0,$$

中緯度と赤道域の全ての波 (Aiki et al. under revision in JAS)

$$\begin{split} \frac{\partial}{\partial t^*} \frac{\rho_0^*}{2} \Big[ \overline{u^{*2} + v^{*2} + \frac{1}{N^{*2}} \left(\frac{\partial \Phi^*}{\partial z^*}\right)^2} \Big] + \\ \nabla^* \cdot \Big\langle \Big\langle \rho_0^* \overline{u^* \Phi^*} + \rho_0^* \frac{\partial}{\partial y^*} \left(\frac{\overline{\Phi^* \varphi^*}}{2} + \frac{1}{\beta^*} \frac{\overline{\partial^2 u^*}}{\partial t^{*2}} \varphi^* \right), \\ \rho_0^* \overline{v^* \Phi^*} - \rho_0^* \frac{\partial}{\partial x^*} \left(\frac{\overline{\Phi^* \varphi^*}}{2} + \frac{1}{\beta^*} \frac{\overline{\partial^2 u^*}}{\partial t^{*2}} \varphi^* \right) - \frac{\partial \left(\rho_0^* R^*\right)}{\partial z^*}, \\ \rho_0^* \overline{w^* \Phi^*} + \frac{\partial \left(\rho_0^* R^*\right)}{\partial y^*} \Big\rangle \Big\rangle = 0, \end{split}$$

アスタリスクは 次元付きを表す

赤道慣性重力波、混合ロスビー重力波、ロスビー波(無次元で表現)  

$$\frac{\partial^2 v}{\partial y^2} + \left(\tilde{m}^2 \omega^2 - k^2 - \frac{k}{\omega}\right) v - \tilde{m}^2 y^2 v = 0,$$
特性方程式  

$$v = \mathcal{A} \cos \mu \exp(-\tilde{m} y^2/2 + z/2) H^{(n,\tilde{m})},$$
  

$$u = \frac{1}{\tilde{m}^2 \omega^2 - k^2} \left( \omega \tilde{m}^2 y v_\mu - k \frac{\partial v_\mu}{\partial y} \right),$$
  

$$\Phi = \frac{1}{\tilde{m}^2 \omega^2 - k^2} \left( ky v_\mu - \omega \frac{\partial v_\mu}{\partial y} \right),$$
  

$$w = -\frac{\partial^2 \Phi}{\partial t \partial z} = \omega \frac{\partial \Phi_\mu}{\partial z} = \omega (-m\Phi + \Phi_\mu/2),$$
  

$$\frac{\partial \omega}{\partial k} = \frac{2k\omega + 1}{3\tilde{m}^2 \omega^2 - (k^2 + 2\tilde{m}n + \tilde{m})}$$
  

$$= \frac{2k\omega^2 + \omega}{2\tilde{m}^2 \omega^3 + k},$$
  

$$\frac{\partial \omega}{\partial m} = \frac{(-2\tilde{m}\omega^2 + 2n + 1)\omega m/\tilde{m}}{3\tilde{m}^2 \omega^2 - (k^2 + 2\tilde{m}n + \tilde{m})}$$
  

$$= \frac{-(\tilde{m}^2 \omega^3 + \omega k^2 + k)\omega m/\tilde{m}^2}{2\tilde{m}^2 \omega^3 + k},$$

中緯度慣性重力波、ロスビー波(有次元で表現)

 $\frac{1}{\rho_0^*} \frac{\partial}{\partial z^*} \Big[ \frac{\rho_0^*}{N^{*2}} \frac{\partial}{\partial z^*} \Big( \frac{\partial^3 v^*}{\partial t^{*3}} + f^{*2} \frac{\partial v^*}{\partial t^*} \Big) \Big]$ 特性方程式  $+\frac{\partial}{\partial t^*}\left(\frac{\partial^2 v^*}{\partial x^{*2}}+\frac{\partial^2 v^*}{\partial y^{*2}}\right)+\beta^*\frac{\partial v^*}{\partial x^*}=0,$ 

*w* –

$$v^* = \mathcal{A}^* \exp[i\mu] \exp[z^*/(2H^*)]$$
  
=  $\mathcal{A}^* e^{i\mu + z^*/(2H^*)}$ ,

$$u^{*} = \frac{f^{*}\tilde{m}^{*2}\omega^{*}v_{\mu}^{*} + N^{*2}k^{*}l^{*}v^{*}}{\tilde{m}^{*2}\omega^{*2} - N^{*2}k^{*2}},$$
  
$$\Phi^{*} = \frac{(f^{*}k^{*}v_{\mu}^{*} + l^{*}\omega^{*}v^{*})N^{*2}}{\tilde{m}^{*2}\omega^{*2} - N^{*2}k^{*2}},$$

$$\begin{split} \frac{\partial \omega^*}{\partial k^*} &= \frac{(2k^*\omega^* + \beta^*)N^{*2}}{(3\omega^{*2} - f_0^{*2})\tilde{m}^{*2} - (k^{*2} + l^{*2})N^{*2}} \\ &= \frac{(2k^*\omega^{*2} + \beta^*\omega^*)N^{*2}}{2\tilde{m}^{*2}\omega^{*3} + \beta^*N^{*2}k^*}, \\ \frac{\partial \omega^*}{\partial l^*} &= \frac{2l^*\omega^*N^{*2}}{(3\omega^{*2} - f_0^{*2})\tilde{m}^{*2} - N^{*2}(k^{*2} + l^{*2})} \\ &= \frac{2l^*\omega^{*2}N^{*2}}{2\tilde{m}^{*2}\omega^{*3} + \beta^*N^{*2}k^*}, \\ \frac{\partial \omega^*}{\partial m^*} &= \frac{-2(\omega^{*2} - f_0^{*2})m^*\omega^*}{3\omega^{*2}\tilde{m}^{*2} - [N^{*2}(k^{*2} + l^{*2}) + f_0^{*2}\tilde{m}^{*2}]} \\ &= \frac{-2(\omega^{*2} - f_0^{*2})m^*\omega^{*2}}{2\tilde{m}^{*2}\omega^{*3} + \beta^*N^{*2}k^*}, \end{split}$$

### 各種赤道波の分散関係式







### 各種赤道波の分散関係式







| 中緯度と赤道域の全ての波の群速度ベクトルに平行なエネルギーフラックスの表現式

$$\begin{split} \widehat{\mathcal{R}} & \mathbb{E} \mathbb{E} \left[ \frac{\partial}{\partial t^*} \frac{\rho_0^*}{2} \left[ \overline{u^{*2} + v^{*2} + \frac{1}{N^{*2}} \left( \frac{\partial \Phi^*}{\partial z^*} \right)^2} \right] + \underbrace{\mathcal{R}} \\ & \frac{\partial}{\partial t^*} \frac{\rho_0^*}{2} \left[ \overline{u^{*2} + v^{*2} + \frac{1}{N^{*2}} \left( \frac{\partial \Phi^*}{\partial z^*} \right)^2} \right] + \underbrace{\mathcal{R}} \\ & \nabla^* \cdot \left\langle \left\langle \rho_0^* \overline{u^* \Phi^*} + \rho_0^* \frac{\partial}{\partial y^*} \left( \frac{\overline{\Phi^* \varphi^*}}{2} + \frac{1}{\beta^*} \frac{\overline{\partial^2 u^*}}{\partial t^{*2}} \varphi^* \right) \right\rangle \\ & \rho_0^* \overline{v^* \Phi^*} - \rho_0^* \frac{\partial}{\partial x^*} \left( \frac{\overline{\Phi^* \varphi^*}}{2} + \frac{1}{\beta^*} \frac{\overline{\partial^2 u^*}}{\partial t^{*2}} \varphi^* \right) - \frac{\partial(\rho_0^* \mathbb{R}^*)}{\partial z^*} \\ & \rho_0^* \overline{v^* \Phi^*} - \rho_0^* \frac{\partial}{\partial x^*} \left( \frac{\overline{\Phi^* \varphi^*}}{2} + \frac{1}{\beta^*} \frac{\overline{\partial^2 u^*}}{\partial t^{*2}} \varphi^* \right) - \frac{\partial(\rho_0^* \mathbb{R}^*)}{\partial z^*} \\ & \mathcal{R}^* = \frac{1}{2} \int_0^{t^*} \left( \frac{\overline{\partial^2 u^*}}{\partial y^* \partial y^*} - \frac{\overline{\partial^2 v^*}}{\partial z^* \partial x^*} \frac{t^{*2}}{N^{*2}} \right) dy \\ & \mathcal{R}^* = \frac{1}{2} \int_0^{t^*} \left( \frac{\overline{\partial^2 u^*}}{\partial y^* \partial y^*} - \frac{\overline{\partial^2 v^*}}{\partial z^* \partial x^*} \frac{t^{*2}}{N^{*2}} \right) dy \\ & \mathcal{R}^* = \frac{1}{2} \int_0^{t^*} \left( \frac{\overline{\partial^2 u^*}}{\partial y^* \partial y^*} - \frac{\overline{\partial^2 v^*}}{\partial z^* \partial x^*} \frac{t^{*2}}{N^{*2}} \right) dy \\ & \mathcal{R}^* = \frac{1}{2} \int_0^{t^*} \left( \frac{\overline{\partial^2 u^*}}{\partial y^* \partial y^*} - \frac{\overline{\partial^2 v^*}}{\partial z^* \partial x^*} \frac{t^{*2}}{N^{*2}} \right) dy \\ & \mathcal{R}^* = \frac{1}{2} \int_0^{t^*} \left( \frac{\overline{\partial^2 u^*}}{\partial y^* \partial y^*} - \frac{\overline{\partial^2 v^*}}{\partial z^* \partial x^*} \frac{t^{*2}}{N^{*2}} \right) dy \\ & \mathcal{R}^* = \frac{1}{2} \int_0^{t^*} \left( \frac{\overline{\partial^2 u^*}}{\partial y^* \partial y^*} - \frac{\overline{\partial^2 v^*}}{\partial z^* \partial x^*} \frac{t^{*2}}{N^{*2}} \right) dy \\ & \mathcal{R}^* = \frac{1}{2} \int_0^{t^*} \left( \frac{\overline{\partial^2 u^*}}{\partial y^* \partial y^*} - \frac{\overline{\partial^2 v^*}}{\partial z^*} \frac{t^{*2}}{N^{*2}} \right) dy \\ & \mathcal{R}^* = \frac{1}{2} \int_0^{t^*} \left( \frac{\overline{\partial^2 u^*}}{\partial y^* \partial y^*} - \frac{\overline{\partial^2 v^*}}{\partial z^* \partial y^*} \frac{t^{*2}}{N^{*2}} \right) dy \\ & \mathcal{R}^* = \frac{1}{2} \int_0^{t^*} \left( \frac{\overline{\partial^2 u^*}}{\partial y^* \partial y^*} - \frac{\overline{\partial^2 v^*}}{\partial z^*} \frac{t^{*2}}{N^{*2}} \frac{t^{*2}}{N^{*2}} \right) dy \\ & \mathcal{R}^* = \frac{1}{2} \int_0^{t^*} \left( \frac{\overline{\partial^2 u^*}}{\partial y^* \partial y^*} - \frac{\overline{\partial^2 u^*}}{\partial z^*} \frac{t^{*2}}{N^{*2}} \right) dy \\ & \mathcal{R}^* = \frac{1}{2} \int_0^{t^*} \left( \frac{\overline{\partial^2 u^*}}{\partial y^* \partial y^*} - \frac{\overline{\partial^2 u^*}}{\partial z^*} \frac{t^{*2}}{N^{*2}} \frac{t^{*2}}{N^{*2}} \frac{t^{*2}}{N^{*2}} \right) dy \\ & \mathcal{R}^* = \frac{1}{2} \int_0^{t^*} \left( \frac{\overline{\partial^2 u^*}}{\partial z^*} \frac{t^{*2}}{N^{*2}} \frac{t^{*2}}{N^{*2}} \frac{t^{*2}}{N^{*2}} \frac{t^{*2}}}{N^{*2}} \frac{t^{*2}}{N^{*2}} \frac{t^{*$$

JRA55の解析

(近似版を使用)





### Wave Energy Flux (WEF) (近似版を使用)







## まとめ

本研究で使用する波動エネルギーフラックス診断式の利点は、中緯度から熱帯まで連続的かつ等 価に波動エネルギーの伝達経路を群速度ベクトルという意味付けを伴いながら定量的に評価 できることである。つまり(ロスビー波・慣性重力波・ケルビン波のような)波動種類の違いを 問わず共通の尺度で統一的に記述できる

特に海洋においては海岸線における境界条件も満たすので西岸と東岸で波が反射/回析する過程 を群速度ベクトルに沿ってトレースして、消散領域までのエネルギー循環を地図上で定量的 に特定することが初めて可能となった

海洋では浅水方程式を使って事例研究

(Ogata and Aiki, 2019 SOLA; Li and Aiki, 2020 GRL; Song and Aiki, 2020 JGR; Song and Aiki, JPO under revision; Toyoda et al, JC under revision)

気象ではJRA55を使って事例研究 (Fukutomi and Aiki, JGR under revision)

3次元の定式化がようやく終了、当面は近似版の診断式を使っていく (Aiki et al, JAS under revision)

平均流・波動相互作用理論との連携は今後の課題

2018-2021年度プロジェクト研究(基盤研究A) (代表:相木、分担:福富・豊田・中野・尾形・菅野)

### 解析コードのダウンロードは… http://co2.hyarc.nagoya-u.ac.jp/labhp/member/aiki/invepv.html

| 補助申請<br>(毎年1.15締め切り)       |                                                               |                 |  |  |  |
|----------------------------|---------------------------------------------------------------|-----------------|--|--|--|
|                            | MOA データベース                                                    | 阿部文雄            |  |  |  |
| 共同利用・共同研究                  | SuperDARN 北海道-陸別第1・第2短波レーダー(陸別)                               | 西谷 望            |  |  |  |
|                            | 運動論プラズマシミュレーションコード                                            | 梅田隆行            |  |  |  |
| 共同利用・共同研究申請                | 雲解像モデル (CReSS)                                                | 坪木和久            |  |  |  |
|                            | 衛星データシミュレータ (SDSU)                                            | 增永浩彦            |  |  |  |
| 採択課題リスト                    | ISEEリオメータネットワークデータ(海外の多点観測)                                   | 塩川和夫            |  |  |  |
| 共同利用機器                     | 大気海洋中の波動エネルギー伝達経路解析コード                                        | 相木秀則            |  |  |  |
| ×1131 3713 194 HA          |                                                               |                 |  |  |  |
| 共同利用・共同研究成果報告書             |                                                               | <u>ページトップへ▲</u> |  |  |  |
| ISEE Award(宇宙地球環境研<br>究所賞) | 与日地球境境研究所<br>Institute for Space-Earth Environmental Research |                 |  |  |  |

http://www.isee.nagoya-u.ac.jp/co-re.html