Quick Summary of Aqua Planet Experiment (APE)

Kensuke NAKAJIMA⁽⁴⁾, Yoshi-Yuki HAYASHI⁽¹⁾, Michael Blackburn⁽²⁾, David Williamson⁽³⁾, Yukiko YAMADA⁽⁵⁾, Yoshiyuki O. TAKAHASHI⁽¹⁾, Masaki ISHIWATARI⁽⁵⁾, Wataru OHFUCHI⁽⁶⁾ and 14 APE Modeling groups

Center for Planetary Science/Kobe University,
 Reading University, 3) NCAR, 4) kyushu University,
 Hokkaido University, 6) Earth Simulator Center /JAMSTEC

WTK Workshop at CPS 14 March 2013

We have come back to the Earth, the planet we know best.

But understanding the behavior of the atmosphere (or its models) is still not an easy task even in the simplest set-ups.

Background

The Gap between Simulation and Understanding in Climate Modeling

BY ISAAC M. HELD

Should we strive to construct climate models of lasting value? Or should we accept as inevitable the obsolescence of our models as computer power increases?

HE NEED FOR MODEL HIERARCHIES.

The complexity of the climate system presents a challenge to climate theory, and to the manner in which theory and observations interact, eliciting a range of responses. On the one hand, we try to simulate by capturing as much of the dynamics as the stated goal of improving these comprehensive models.

Due to the great practical value of simulations, and the opportunities provided by the continuing increases in computational power, the importance of understanding is occasionally questioned. What does

Held (2005) Bulletin of the American Meteorological Soc.

GFD Dennou Club Dcmodel project

What is dcmodel?

The goal of dcmodel project is developing hierarchical numerical models for fluid dynamics in Earth and planetary sciences.

Products

Fluid models

aqcm5

A general circulation model based on primitive equation system (Fortran 77, old project)

DCPAM

A general circulation model based on primitive equation system (Fortran 90, new project) for planetary atmospheres with spmodel as a dynamical core

deepconv

A two-dimensional non-hydrostatic fluid model

<u>dynamo</u>

A MHD dynamo model in a rotating sphere and spherical shells (written with spmodel library)

<u>spmodel</u>

Hierarchical spectral models for geophysical fluid dynamics (equationlike expression of ISPACK covered with Fortran 90 interface)

ISPACK

Spectral transformation library for numerical fluid dynamics and barotoropic / shallow water models with plane or spherical geometries We have been developing a hierarchy of numerical models.

地球流体電脳俱楽部 GFD Electric brain Club

Still a long way to go... (Very limited human resources.)

<u>qms</u>

A grid model development tool and sample programs

IGModel

An icosahedral grid atmospheric model

Energy model

<u>oboro</u>

An equiribrium cloud condensation model by using Gibbs free energy minimization method

dcrtm (Sorry, this page is described in Japanese)

A radiative transfer model for planetary atmospheres

I/O library

<u>atool5</u>

Fortran 90/95 library for hierarchical numerical models

Aqua Planet Experiment in the hierarchy of models

Blackburn and Hoskins (2013)

The Earliest Aqua Planet Experiment

Fig. 3 Longitude-time sections of (a) 850 mb zonal wind deviation (u') and (b) precipitation per 12 hours. The figures are duplicated in the longitudinal direction to clarify the periodicity. The contour intervals are 2.5 m/s for u' and 2.5 mm/12 h for precipitation. The regions of (a) easterly (u' < 0) and (b) precipitation greater than 1 mm/12 h are shaded. The line segment AB denotes the phase line ($c_0 = 15$ m/s) along which the composite structures are constructed.

observed features

OLR (cloud activity)

Schematic diagram for hierarchy of ISV. (Nakazawa, 1988)

The APE project

Proposal : Neale and Hoskins (2000a,b) Numerical Experiments Performed: 2003-2006 Workshops: 2005@Reading UK, 2007@Choshi JP Results: APE ATLAS (2011), JMSJ Special Issue (2011)

Idealised climates simulated by AGCMs which are being used and developed for NWP and climate research.

Several idealised distributions of SST, focusing on

- the distribution and variability of convection in the tropics
- the storm-tracks in mid-latitudes.

A benchmark of current model behavior Understand the causes of inter-model differences subgrid-scale parameterization suites, dynamical cores, resolution

Group-ID	Resolution,	Dynamics, horizontal	Deepconvection
AGUforAPE	T39L48 (3x3)	Spectral	Emanuel (1991)
CGAM	2.5 x 3.75 L30	Arakawa B grid	Gregory-Rowntree penetrative mass- flux convection
CSIRO (standard)		Conformalizatio guid	Mass flux type with downdraft
CSIRO (old)	C & 18 (2x2)	Conformal cubic grid	Mass flux type with downdraft
DWD	ni=64 L31	icoschedral grid	Bulk mass flux (Tiedke, 1989)
ECMWF	T 59 60 (x)	spectre S + EC	Rvik masyflux (Tiedke, 1989)
ECMWF_07	T159L60 (2x2)	Spectral	Bulk mass flux (Tiedke, 1989)
FRCGC	7km mesh (0.063x)	Icosahedral grid	Cumulus (partial) resolving
GSFC	2 x 2.5 L34	4th order global grid	Relaxed AS (Moorthi & Suarez, 1992)
GFDL	?		Relaxed AS
K-1 Japan	T42L20 (2.8x 2.8)	Spectral LAS	Prognostic AS (Pan &Randall, 1998)
LASG	R42L9 (2.8x2.8)	Spectral	Slingo cloud parameterization scheme, Manable convective parameterization
міт V	viillam	ison et a	Relaxed AS (Moorthi & Suarez, 1992)
MRI	T42L30 (2.8x2.8)	Spectral	Prognostic AS
NCAR	T42 L26 2 (2 8x2.8)	Spectral	Zhang and McFarlane (1995)
UKMO_n48	N48L38 (2.5x3.75)	Arakawa C grid	Gregory-Rowntree
UKMO_n96	N96L38 (1.25x1.625)	Arakawa C grid	Gregory-Rowntree

NOTABLE FEATURES FOUND IN APE OWING TO IT'S IDEALIZED SET-UP

Normal Modes easy to identify Example1: "raw" Wavenuber-Frequency Spectrum of Surface Pressure (UKMO, control) cale)

EXAMPLE OF COMPARISON (ZONALLY UNIFORM SST)

DIVERSITY OF TROPICAL CONVECTIVE ACTIVITY

Spectral filters defined from Wheeler & Kiladis plots AGUforAPEe

KW filter / composite [T, (u, omg)]

Westward phse tilt? ... Probably.

ECMWF(05/07) and LASG.

Westward phase tilt is evident (wave-CISK like).

GSFC : Eastward tilt

AGUforAPE: cold upward motion

210

R

SIRO KELV You may want to know Why these difference develop.

But, it is very difficult to understand the results.

GSFC KELV

EXAMPLE OF COMPARISON (WITH SST ANOMALY)

RESPONSE TO SST ANOMALY IS VERY "STRANGE".

Surface pressure and wind (3keq)

Significant difference from classical Matsuno-Gill pattren

3KW1 vs "Walker circulation"

In APE, high pressure develops to the east of warm SST area.

In the real atmosphere, high pressure develops to the west of warm SST area.

upper tropospheric pressure and wind fields

Why is the response in APE strange?

Retrospect on APE

- APE as Idealized experiments
 - Simple set-up allows clear display of "waves" and their mutual interaction.
 - Interpretation, however, is not necessarily easy.
 - It is not easy to choose or justify setup
 - Apparently subtle difference in set-up can result in large difference.
 - Compromize between "reality" and "idealization"
- APE as an intercomparison project
 - Variety among results from different models is VERY DIVERSE.
 - Interpretation, again, is not necessarily easy. To help it, we need
 - Enough data (variables, space-time coverage/resolution)
 - Enough description of participating models (source codes?)
 - Cooperation among modelers, theoreticians, and data-analysts

Concluding remarks

- Aqua planet is not easy to understand.
 - Aqua Planet setup is one of the most serious test beds of AGCMs.
- Necessity and possibility of "APE2"?
 - More complete data should be collected.
 - Advancement since 2005 may improve convergence of results.

Thank you for your attention!

Background

Equatorial hierarchical structure of precipitation activity

- It has been argued that there exists three types of structure with different time and spatial scales; <u>MJO, super cloud cluster and cloud cluster</u>.
- The representations in GCMs differ model by model.

Time-longitude section of transient OLR averaged between the equator and 5N from May to July in 1980. (Nakazawa, 1988)

Schematic diagram for hierarchy of ISV. (Nakazawa, 1988)

Normal Modes maybe useful for comparison

air pressure at sea level S-T power spectrum (day-1) (1) (CGAM, control) 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 10

wvn

air pressure at sea level S-T power spectrun (day-1) (1) (GFDL, control)

surface air pressure S-T power spectrum ((day-1) (1) (NCAR, control)

air pressure at sea level S-T power spectrum (log (day-1) (1) (CSIRO, control) 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 10 wvn

h = 50

h = 12

surface air pressure S-T power spectrum (log scal€ (day-1) (1) (GSFC, control)

— h =200

surface air pressure S-T power spectrum (log sc (day-1) (1) (ECMWF, control) 0.8

air pressure at sea level S-T power spectrum (day-1) (1) (LASG, control)

Normal Modes easy to identify

Example2: "raw" Wavenuber-Frequency Spectrum of Precipitation (UKMO, flat)

Signal Modulation easy to identify

Example3: Spectrum of Precipitation Modulation of Tropical Signals by Atmospheric Tide

Product of two waves in real space <-> sum in wavenumber space $exp[i(k_1x-f_1t)] * exp[i(k_2x-f_2t)] = exp[i\{(k_1+k_2)x-(f_1+f_2)t\}]$ Product with diurnal tide <-> shift of (k,f) \rightarrow (k-1, f + (1/1day))

Note they are NOT "inertio gravity waves".

APE RESULTS

- No model is similar to others.
- Because of it's simple set up, we can safely identify that the difference is caused by model implementation of the atmosphere, not from the surface inhomogeneity.
 APE is a good (tough) tool of model intercomparison.
- However, it is not very easy to understand what is going on, how they are different, ...

Let us try spectral analysis to identify possible disturbance structures

GW filter / composite [T, (u, omg)]

Eastward phase tilt? ... Probably.

ECMWF05 and LASG: Eastward phase tilt is evident (wave-CISK like). GSFC: strong power but ...

AGUITORAPE (AGUITORAPE

NCAR GRAV T(U,-ON NCAR

GW filter / composite [mslp,uv925]

GW filter /composite [phi,u,v250]

AD filter / composite [T, (u,omg)]

No phase tilt?

Vertical structure displays significant variety: Vertical structure of T suggests complex structure of heating (downdrafts, ice phase etc.)

CSIRO ADV T(U,-C CSIRO

GSFC ADV T(U,-ON GSFC

ECMWF ADV T(L 140 160 180 190

LASG ADV T(U,-OM LASG

AGUforAPEe AGUforAPE

ECMWF (2007) ECMV

NCAR ADV T(U,-OM NCAR

ECMWF

AD filter / composite [mslp,uv925]

AD filter /composite [phi,u,v250]

Response to SSTA on different basic SST distribution (precipitation)

AGCM5.3 (simple model, T42L16)

Yamada et al.

Precipitation (3keq)

Resolution Dependence

- AFES1.15-ape (CCSR-NIES AGCM 5.4.02 tuned for the Earth Simulator)
 - Cumulus parameterization
 - non: no parameterizaion (only large scale condensation)
 - SST: zonally uniform, symmetric to the equator
 - The control profile of APE
 - Resolution
 - L48
 - T39, T79, T159, T319

Dependence on resolution (non)

Dependence on resolution (T159L48_non)

Eastward moving features
 – 15m/s

Yamada et al.

Dependence on resolution (T159L48_non)

- Westward moving features
 - 15-20m/s
 - 8-10m/s

Yamada et al.

Characteristic spectrum of IGW from modulation of in Kelvin "envelope"

ECMWF05 peaked tppn

Shift of (k,f) due to a single characteristic inertio gravity wave component?

Mechanism of the positive rainfall anomaly to the east in Hosaka et al (1998)

We can understand H98 in the framework of "Matsuno-Gill pattern" and Low level Ekman flow

Response to SSTA on different basic SST distribution (surface pressure) Surface dir pressure Skeq surface dir pressure flat 3Keq

surface air pressure

-100

-50

(Pa)

80

60

40

20

Ó

-20 -40

-60

-80

(degrees_north)¹⁵⁰

Þ

CONTOUR INTERVAL = 5.000E+01

150

(degrees_east)

Qobs3Kea

100

n

Іоп

50

Yamada et al.

[(diff) from (mean) zonal of H1998con]

Importance of "basic states"

3KW1 vs "Walker circulation"

-0.1 0 0.1 Pa/s