Approximations that preserve conservation laws

KEY IDEA: Do not disturb the corresponding symmetry property.

Approximations can often be regarded as constraints.
First example: Constant-density flow

Exact dynamics:

o f dr [ da {_E x_ (jg;,S(a))—(D(x)}=0

Constraint:

6fffda E(a,.S(a))=0

Approximate dynamics:
6fdrfffda{—% E_(D( X) + A(a,r)(%—ao)} =0

OX : —=-0,VA-VO
ot
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Second Example: Constant-density flow in a thin layer

Constraint: Fluid moves in vertical columns.

Eulerian statement:
ou v

gz 0z
Lagrangian statement:
X = x(a,b,r), y= y(a,b,r)

d(x,y,z) d(x,y) dz
=&  becomes 8( a b) % = %o

which integrates to

d(a,b)
d(x,y)

Z= a,c + const

Assigning ¢=0 at the bottom and ¢ = H|, at the free surface z=h,
we obtain:
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We build the constraints into the Lagrangian by using this relation
to eliminate z(a,b,c,r) in favor of X(Cl,b,‘b') and y(a,b,r).

The terms in the Lagrangian are:
H, 2 2 2 2
ox ay ox ay
= 1l == =41 - =
ﬂ'dadb{dc{z((%) . 2((%) } L, [ dadb{( at) +(ar) }

oh

ffdadb?dc{%(a ) } [[dadb fdc{ (H %)2}=%Ho ffdadb{%(g)z}

[[da db? de{gz} = [[da db?dc{g Hi h} = 1 H, [[dadb{gh}

The resulting Lagrangian is

x(a.br).y(ab.r)] =4 ffdadb{(ar)2+(%)2 +%(Z—’;)2 _ gh}

where £ 1s to be considered an abbreviation for
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Thus Hamilton’s principle takes the form:

dx 30x | dh IS
ox: 8f Ldv= [ [[da db{ ’; a; g;g—%géh}

_ ffdadb{——é —-ZThah ——géh}

Again we need an identity

[[ daab{Fsn} = [[ da db{—thé(%)}
= f dadb{—thé

ffdadb -tha(éx’y)}

ao o \ d(a,b)

| o(Fn’.y)
" ohi f dadbiéx aD) }

Putting

we obtain

1 D*h
ox: 2 —gVh -—V|h’
Dt 3h
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As in the 3D case, the definition

implies

D—h+hV-u=0
Dt

so the complete dynamics consists of the continuity equation
and momentum equation

Dzh)

These equations were discovered by Green and Naghdi (1976)
using a method based on “Cosserat surfaces.”

If we completely omit the vertical kinetic energy (very thin layer)
we obtain the Lagrangian

L x(a.b,7).y(a.b.7)]=4 ([ da db{(j—x)z + (%)2 - gh}

for the shallow-water equations:

D—h+hV-u=0
Dt

Du

= —gVh
Dt s
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Conservation Laws
Momentum, energy, .....potential vorticity.

The particle-relabeling symmetry is present, because the
derivatives

da’ b’ da b

enter the Lagrangian only through

h=a,H, o'?(a,b)
a(x,y)
As before
640 0 o P P sho0 = eV ey
a(x,y) da b b da
We have

SL=6 L[ dadb{((%) (%)2+%(g—i)2—gh}

- ([ da db{— AR LA 5%}
gt dr dr Jt It It

All terms are of the form

oF _oF
ot Jt
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Since

5 9 5 9 g,
ot da ot ob ot

A term of the general form

fdrffdadb é’—ré&—r

OF OF
=fdrffdadb Fl e atéa—ggéb)

- [ dx [[ dadb J (oF 5F)5a+ J (&F &F)éb
ot \ 0t da ot \dt b

- [dr ([ dadb - J (aF &F)mer J (aF aF)azp
Jt\dt da)db Jr\dt b
g J(F.F)

fdrffdadb 7 dah) Y

|
(.

Applying this result, we obtain

g d(x,x) d(y.y) la(h’h)
= [ ax{f dadb &r{ d(a,b) ¥ a(z,li) "3 d(a,b)

which must vanish for arbitrary Y.

Y
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This yields the conservation law

90 _
ot -
where
0- &(x,u) .\ &(y,v) N l(?(h,Dh/Dt) _1{du v
~dab) dab) 3 dab)  h\dy ox

That is,
D (; + ;J(Dh/Dz,h)) 0
Dt h
where
ov  du
€= Fo 5

R %J(h,Dh/Dt)

1s the relative vorticity. The corresponding shallow-water result is

B(E) _0
Dt\ h
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Does this result make sense?

The general, three-dimensional, Ertel theorem for constant-density
flow 1s

i+ ui+vi+wi 0,=0
at dx  dy 0z

where
0, =[(Vxv)- V6]

If the fluid moves in vertical columns, this implies

where
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For columnar motion,

So if we choose

We obtain

Computing

L L Dh\ .9
Q=;fdz (J(H’W)+§9z)=zfdz (J(%’%E)+C&_z(%))

0 0

gives the expected result.

(The non-Hamiltonian derivation of the Green-Naghdi equations
gives no hint of a potential-vorticity law)
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Nearly geostrophic flow

Lagrangian for the shallow water equations:

L[ x(ab)y(ab.r)] =1 [f da db{(j—);) ; (%) _ gh}

It will be convenient to use the extended form of Hamilton’s
principle.

So we do a quick review of this.

The Lagrangian given above is analogous to
5
5fL(qi’q.i)dt =0

which gives the Euler-Lagrange equations

dfaL)_a
di \ dq, ag;

These inspire us to define the generalized momenta

4L

b=,

and Hamiltonian
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H= EpiQi -

from which it follows that

. JL oL JL
dH = E {qi dp; + p; dq; - gdql —%dql} E {ql dp, —Edq,

1 l

which in turn implies

Using the Euler-Lagrange equation, these are equivalent to

dp, oH dq, oH

Z = _ﬁ_q.’ a’tl =+ p (the canonical equations)

and the variational principle

5fdt{ 44, _ (p, q,t)}= 0

in which

oq,

1

and  Op,

are taken independently.
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For the shallow-water Lagrangian
ax\ (ay
L=2||dadby|—| +|—
2 f f {( 81) ( ot

we have:

g

6fdr{ffda u(a,t) &X(;E’T) —H[x,u]} =0
dp, JH dq;, N oH |
dr oq,’ dr ap,
on _6H ox OH
or & Jr du
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The shallow-water Lagrangian in rotating coordinates

To add Coriolis force with a completely arbitrary Coriolis

parameter

f(x)

add “potentials” R(x,y) and P(x,y) to the Lagrangian

Hula.r

such that

The Hamiltonian

H=lffda{u2 +v° + go”(x,y)

f da{u R) —+(v+P)ji}—H

OR OP
5+ P f(x,y)

&(a,b)}

1s the same as in the nonrotating case. As always
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fu(a. 1)x(a.1)]- [ da{(u— RZ (v p)ﬂ} iy

ot ot

The variations yield the rotating shallow-water equations

0.
ou : u=—x, ov: v=ﬂ
Jt Jt
u . dy oh d o ox oh
o — = =—g— P —+ f— = —g—
SEr it Al by APl S &y

These equations conserve the energy

H=%ffda{u2+v2+gh}

and the potential vorticity

w_
ox oy
h
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We are interested in nearly geostrophic flow, i.e. flow in which &
1s small:

LJux]= ffda{(eu—R)g—x +(ev+ P)Q} -H

T ot

The most drastic approximation sets =0, corresponding to the
constraint:

u(a,7)=0

The resulting Lagrangian

ffda{ (x,y —T+P(xy)z %g&(a’w

depends only on x, not on u. The variations yield

o"y oh ox oh
X f g& Y +f&1: 8 )

Since the continuity equation is implicit, the complete dynamics
are

Jh
fv= 8~

Jh
Ju=-g—

dy
D—h+hV u=0
Dt

called planetary geostrophic dynamics.
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A less drastic approximation replaces u by the geostrophic
velocity

U= uG[X(a 1:)] =-=— V= vG[X(a,r)] =

%|§

g
Jox

This corresponds to a projection in phase space
onto a manifold with half the dimensions of the full phase space.

The Lagrangian becomes

L[x(a7)]= ] da{ —+(vG+P)§y}—H

ot ot
with

H[x(a.7)]=1 [[ da {ucz iv g ﬁ(a,b)}

J(x,y)

The dynamics

6fdr Ll[x(a,r)]=0

yields equations with the same accuracy as the quasigeostrophic
equations but without the requirement that the fluid depth be nearly

uniform. The L, —dynamics conserves the energy H,| and the
potential vorticity

Py g
ox oy
h
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