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太陽内部のプラズマの流れ： 
診断・モデル化・推定

①診断 ： 太陽内部のプラズマの流れの観測

②モデル化 ： 太陽内部MHDモデリング

- 太陽の内部構造モデルと日震学 

- 標準太陽モデルと熱対流の物理 

- 太陽磁場の観測と太陽MHDを考える上で知っておくべきこと

- 太陽ダイナモモデル（ダイナモの基礎・標準シナリオ） 

- グローバルモデルと過去20年の研究の進展 

- セミグローバルモデルとダイナモのロスビー数依存性 

③推定 ： 太陽熱対流の難問：計算・データサイエンス手法 

　　　　　　 を使った対流駆動機構の検討と推定
- Convection conundrum と 非局所駆動型熱対流 

- Topological Data Analysis (TDA)の基礎 

- 太陽熱対流のトポロジカルな特徴（モデル vs. 観測）
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太陽の内部構造



Eventually the heirarchy 
must culminate in motions 
large enough to sense the 
spherical geometry and 

rotation

Giant Cells!

ṁ = 4�r2gf⇥vr ⇠ 4.3⇥ 1021g s�1

� ⇠ MCZ/ṁ ⇠ 370 years!

Surface convection establishes a 
radial entropy gradient which 
sustains large-scale convective 

instabilities

(Even in linear, non-rotating, Cartesian 
systems, fixed heat flux promotes large 

horizontal scales; Hurle, Jakeman & 
Pike 1967, Depassier & Spiegel 1981)

29Wednesday, July 21, 2010

放射層  
(r < 0.7Rsun)

対流層 
(0.7Rsun < r)

Re > 1012   

  →  激しい乱流状態

太陽のプラズマの流れ 

：非線形性の強い宇宙流体現象を空間解像して 

 観測・研究できる希少なケース

①粒状斑 (granule) ~ 1Mm
②超粒状斑 (super-granule) ~ 30Mm
③巨大胞 (giant cell) ~ 100Mm

※特徴的な3つの対流構造

（熱対流のマルチスケール性）

Hinode SOT(太陽表面の約1/100)

粒状斑 (granule)

約
20

M
m

約20Mm

太陽の内部構造①

（中心核：0 ≦ r ≦0.3Rs） 

・放射層：0 ≦ r ≦0.7Rs 

・対流層：0.7 ≦ r ≦1Rs

標準太陽モデル (Standard Solar Model) ：



Heat transfer II:  convection

Clarkson et al. (2018)

* hot fluid elements can become 
buoyant and rise, transporting energy 

* an intrinsically multi-D process!
1D model: mixing length theory

Fconv ∼ ρvconvcPT(∇ − ∇ad)
v2

conv ∼ gℓ(∇ − ∇ad)
where the mixing length 

is a parameter calibrated to 
observations

ℓ

Convection turns on when the 
temperature gradient exceeds 
the adiabatic temperature 
gradient 

∇ ≡ d ln T
d ln P

> ∇ad ≡ ∂ ln T
∂ ln P

S

In convecting region ∇ ∼ ∇ad
(effective upper limit on 
temperature gradient)

標準太陽モデル（SSM）
星の進化計算  →  標準太陽モデル (Standard Solar Model) ：

e.g., Christensen-Dalsgaard+ 96 

       Bahcall & Pinsonneault 95

- 球対称一次元（太陽の質量は１Msunで不変)

- 準静的進化（静水圧平衡）

- 初期状態 (zero-age main-sequence : ZAMS) ： 一様な化学組成

- 核融合反応を解いて, 化学組成の進化を追う

- それにともなう熱的進化を追う（46億年）　→ 現在の太陽で期待される内部構造

（動径方向のエネルギー輸送を解く; 媒体 : 放射拡散 or 対流）The equations of stellar structure

mass continuity


hydrostatic balance


energy equation


heat transport


composition 
changes
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where x can be taken as a proxy for r and q as a proxy for density (r). We seek a solution
q(x) ⇠ r(r). The Lane–Emden equation must be solved under the assumption of an
equation of state relating pressure, density, and temperature, one example of which is the
ideal gas law. However, temperature can be neglected in the simplest model. The polytropic
equation of state usually takes the form P = Kr1+ 1

n , where n is the polytropic index and
K is a constant of proportionality. Obtaining q(x) ⇠ r(r) yields the stellar profile, which
describes the distribution of matter in the star.

Solving this equation provides a solution for the stellar structure, but to compute the
stellar evolution, we must have a temporal component. In a real equation of state (e.g. the
ideal gas law), there is temperature dependence, and the thermodynamic state of the model
changes from time step to time step according to nuclear energy generation. Monitoring how
the stellar structure solution—in particular, the outer boundary values for quantities such as
effective temperature Teff, luminosity, and radius—changes as a function of time provides
us with evolutionary tracks. The key ingredients a user must specify when generating an
evolutionary track are the mass, composition, and mixing length of the model. While mass
and composition are physical quantities in a way the mixing length is not, all three are
equally important in determining the model star’s evolutionary and structural behavior.

3.2. Thermodynamic Quantities and Convective Stability Criteria
During each time step, the model’s thermodynamic structure must be calculated. This

requires knowledge of whether any given radial shell is stable against convection. To evaluate
convective stability, we check the Schwarzschild [47] and/or Ledoux criterion [48].2 The
Ledoux criterion for dynamical stability is given by

rrad < rad + [f/d]rµ, (3)

where f, d are the partial derivatives of density with respect to temperature and com-
position, respectively, rrad, rad are the radiative and adiabatic temperature gradients,
respectively, and rµ is the composition gradient. Under the simplification of homogeneous
chemical composition (rµ ! 0), this reduces to the Schwarzschild stability criterion:
rrad < rad .

When the applicable condition is satisfied, the zone being evaluated is dynamically
stable. Dynamically stable regions do not produce convective motions, and so the energy
flux is carried out exclusively by radiation (or conduction) in these regimes.

If the convective stability criterion is not met, however, convection will activate and
share in the transport of flux (i.e. luminosity or energy). In cases of efficient convection
(such as deep core convection—see Section 4), the flux is carried entirely by convection.
Stellar evolution calculations invoke MLT in cases where carriage of the flux is shared by
radiation and convection.

In this latter case, a useful toy model for mixing length theory is

Fconv =
1
2

rvcPT
l

HP
(rT �rad) (4)

with
aMLT ⌘ l

HP
, (5)

where r, v, cP represent density, velocity, and specific heat, respectively, and the final
term captures the balance of the global temperature gradient, rT , against the adiabatic
temperature gradient, rad (a more formal derivation is given in Section 6). The definition
in Equation 5 is that of the mixing length parameter, or aMLT. This is a dimensionless

2 For discussion of the difference between these criteria and where they are applicable, consider reading e.g.
Gabriel et al. [49], Salaris and Cassisi [50], Anders et al. [51]

対流安定条件：
（Ledoux criterion）

満たされる場合    : ∇ = ∇rad

満たされない場合 : ∇ → 対流による 

　　　　　　　　　　　　　　　      輸送フラックス

例）

of the local pressure scale height, which is the radial distance over which the pressure changes by an
e-folding factor,
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ρg
. (5.53)

The last equality holds for a star in hydrostatic equilibrium. The assumption that ℓm ∼ HP is not
unreasonable considering that a rising gas blob will expand. Supposing that in a convective region in
a star, about half of a spherical surface area is covered by rising blobs and the other half by sinking
blobs, the expanding rising blobs will start covering most of the surface area after rising over one or
two pressure scale heights.

The convective energy flux

Within the framework of MLT we can calculate the convective energy flux, and the corresponding
temperature gradient required to carry this flux, as follows. After rising over a radial distance ℓm the
temperature difference between the gas element (e) and its surroundings (s) is

∆T = Te − Ts =
[(

dT
dr

)

e
−
dT
dr

]

ℓm = ∆

(

dT
dr

)

ℓm.

Here dT/dr is the ambient temperature gradient, (dT/dr)e is the variation of temperature with radius
that the element experiences as it rises and expands adiabatically, and ∆(dT/dr) is the difference
between these two. We can write ∆T in terms of ∇ and ∇ad by noting that

dT
dr
= T

d lnT
dr
= T

d lnT
d ln P

d ln P
dr
= −

T
HP
∇ and

(

dT
dr

)

e
= −

T
HP
∇ad,

noting that the ‘−’ sign appears because dP/dr < 0 in eq. (5.53). Hence

∆T = T
ℓm

HP
(∇ − ∇ad). (5.54)

The excess of internal energy of the gas element compared to its surroundings is ∆u = cP∆T per
unit mass. If the convective blobs move with an average velocity υc, then the energy flux carried by
the convective gas elements is

Fconv = υc ρ∆u = υc ρcP∆T (5.55)
We therefore need an estimate of the average convective velocity. If the difference in density between
a gas element and its surroundings is ∆ρ, then the buoyancy force will give an acceleration

a = −g
∆ρ

ρ
≈ g
∆T
T
,

where the last equality is exact for an ideal gas for which P ∝ ρT and ∆P = 0. The blob is accelerated
over a distance ℓm, i.e. for a time t given by ℓm = 1

2at
2. Therefore its average velocity is υc ≈ ℓm/t =

√

1
2ℓma, that is

υc ≈

√

1
2ℓmg

∆T
T
≈

√

ℓm
2g

2HP
(∇ − ∇ad). (5.56)

Combining this with eq. (5.55) gives

Fconv = ρcPT
(

ℓm

HP

)2
√

1
2gHP (∇ − ∇ad)3/2. (5.57)

The above two equations relate the convective velocity and the convective energy flux to the so-called
superadiabaticity ∇−∇ad, the degree to which the actual temperature gradient ∇ exceeds the adiabatic
value.

69

Fconv = L/4πr2

を代入して, ∇を決める（後で）. 

これに



46億年後に太陽が現在の半径, 表面温度, 光度, 元素組成になるよう境界条件を課す.

標準太陽モデル（SSM）

（ヘリウム量と混合距離パラメータはフリーパラメータ）

- 日震学観測とニュートリノ実験で検証

- 恒星進化論 → HR図を定量的に説明

Basu+16

Ribas+10

- 太陽表面の固有振動の解析→内部構造を推定

- 太陽由来のニュートリノの 

　スーパーカミオカンデによる観測実験

(ニュートリノ振動まで考慮に入れるとSSMと整合的)



太陽の内部構造②内部回転分布（平均流）
日震学診断 → 太陽内部回転則の推定

①対流層   (0.71Rsun < r < 1.0Rsun　: 対流不安定）

- 赤道加速

- 大部分はconicalな等角速度線

: 差動回転 (∂Ω/∂θ ≠ 0 or ∂Ω/∂r ≠ 0)

(∂Ω/∂r ~ 0 and ∂Ω /∂θ ≠ 0 )
- Near-surface shear layer

②Tachocline （タコクライン） 
   (0.68Rsun < r < 0.71Rsun : 対流安定)

- 強い動径シア (∂Ω/∂r ≠ 0)
: 差動回転 (∂Ω/∂θ ≠ 0 or ∂Ω/∂r ≠ 0)

③放射層
   (r < 0.68Rsun : 対流安定)

: 剛体回転

(∂Ω/∂θ ~ 0 or ∂Ω/∂r ~ 0)

 (NSSL)

Howe+ 2003

※太陽の自転周期 ： 

　 24 days @E.P.  
    ～ 38 days @pole 

(平均：27日)



太陽の内部構造③子午面循環流（平均流）

shown specifically to highlight the substantial differences in uncertainties in various
inferences. Some of the inferences are in broad agreement with each (e.g., Rajaguru
& Antia and Gizon et al.), despite the differences in temporal periods of coverage and
the instruments used in the analysis. Additionally, Gizon et al. (2020) require that the
radial component of MC go to zero at the base of the convection zone (r ¼ 0:7R"),
whereas the other approaches shown in Fig. 15 do not explicitly enforce this.

Rajaguru and Antia (2015), using travel times obtained from HMI, and applying
ray-theoretic kernels to perform inversions, also arrived at a one-cell profile (see
Fig. 15). Mandal et al. (2017), using the same set of travel-time measurements, but
with kernels computed in the limit of the first-Born approximation, found a similar
one-cell profile. Rajaguru and Antia (2015); Mandal et al. (2017) and Gizon et al.
(2020) all used a stream-function formalism to invoke mass conservation, and
thereby reducing the dimensionality of the problem to one unknown scalar function.
Zhao et al. (2013) and Chen and Zhao (2017) for instance do not explicitly invoke

Fig. 15 Comparison between
inversions of MC profiles
obtained by Chen and Zhao
(2017); Rajaguru and Antia
(2015); Gizon et al. (2020) and
Jackiewicz et al. (2015); positive
velocities indicate northward
flow and vice versa. The choice
of instrument and temporal
ranges of data are stated below
each of the plots. The colourbar
below applies to all panels.
There are numerous differences
in the details—the data, the
analysis methods and inversion
methodology, contributing to the
variations among the results.
Ensuring consistency in the
centre-to-limb correction is also
critical to the eventual inference,
as seen in Fig. 7
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function describing MC, i.e., v ¼ $"ðwe/Þ, where v is the flow vector. Note that this
inverse problem could also be rewritten so as to obtain a direct relationship with
vector velocity v; however, this suffers from the drawback that it does not allow for
enforcing mass conservation (e.g., the approach followed by Zhao et al. 2013; Chen
and Zhao 2017).

Equation (5) may be rewritten as a matrix equation, and because Ki is only
dominant along and in the vicinity of the ray path, the condition number of the kernel
matrix can be very large. This poses challenges to obtaining accurate models of w.
Regularization terms and constraints are typically added to improve the condition
number of the system. Giles (2000), for instance, explicitly enforced the base of the
convection zone as the lower boundary of the meridional flow, and even though there
was insufficient signal to infer the flow configuration in those deep layers, Giles
(2000) obtained a one-cell circulation cell.

Controlling the uncertainty of the solution is another major challenge. A standard
approach is to place restrictions on the smoothness class of the solutions by
projecting it on to a basis such as B-splines or Chebyshev polynomials. This prevents
the solution from being overly sensitive to seismic noise, i.e., it improves the overall
condition number of the inverse problem.

Properly propagating uncertainties is critical to ensuring the quality of the
inferences. One way to test whether the error bars are appropriate is to perform
ensemble forward calculations of different models, i.e., compute the observed travel
times using a variety of MC models. This Bayesian approach (e.g., Jackiewicz 2020;
Gizon et al. 2020) provides a means to build more robust uncertainties. Figure 14 is

Fig. 14 Comparison of inversions with error bars of MC profiles obtained by Chen and Zhao (2017);
Rajaguru and Antia (2015), and Jackiewicz et al. (2015); positive velocities indicate northward flow and
vice versa. The estimates of error bars with depth are very different for the four inversions shown here. The
Rajaguru & Antia and Gizon et al. inversions are in good agreement with each other
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日震学診断 → 太陽内部子午面流の推定

・観測的には2つの可能性： 

 - single cell 
 - double cell

理論的な予測

(multi-cell)
未決着

Hanasoge 22

（平均場モデル）



日震学と太陽内部の温度・密度分布

温
度
（

K
）

半径（ ）R⊙

放射層と 
対流層の境界

日震学（Helioseismology）診断

●太陽面速度場から内部を推定
固有振動数 → 太陽内部構造 

（inversion）
標準太陽モデル（SSM）

→

(99.5%の精度)

- 内部の密度・温度分布
- 内部の回転分布・子午面流分布

温度勾配が急 ⇆ 対流

・太陽では放射拡散係数κ

　が外側に向かって減少

↓
・Fを一定に保つために

　大きな温度勾配が必要

F ∝ κ
∂T
∂r

エネルギー流束：

r ≲ 0.7R⊙
0.7R⊙ ≲ r ：対流層

：放射層
得られる物理量：

spherical harmonic degree

n=0
n=1
n=2

動径方向の

モードの違い

fre
qu

en
cy

 [m
H

z]

球面調和関数分解



ドップラーシフト：流体運動に起因して音波のピッチ（音の周波数）が変化

・超音波エコーによる測定
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・日震学

■ 回転によって異なる経路を通る音波Aと音波Bの伝搬距離に違いが生じる　　 

　　→ 振動周波数のスプリット　→　スプリットの幅から角速度の情報を抽出 

                                                          

wave-A

wave-B

補足資料



対流理論・ 

太陽のマルチスケール熱対流描像



対流の線形理論
流体要素に変位  を加えた時, 周囲の媒質との密度差 はΔr Δρ

 の時,  となり浮力を得る. ここで, Δρ < 0 Fr = − gΔρ > 0

と書ける. さらに, （圧力平衡）を仮定するとΔP = 0

圧力スケールハイト  を使って書き換えるとHP = − dr/d ln P

流体要素と媒質の間で熱交換が無いことを仮定すると 
（i.e., 断熱膨張）,  と書ける. この時, 不安定条件は, ∇e = ∇ad

(Schwarzschild criterion)

より, 流体要素の運動方程式（働く力は浮力）, 及び帰結としての線形成長率はFr = − gΔρ

（局所線形化 ）Δ ∝ exp(σt)

(Bohm-Vitense 1958, Gough 1977, 

 Canuto & Mazzitelli 1992)

Δρ = [(dρ/dr)e − (dρ/dr)s]Δr

⋅ (dρ/dr)e = ρ[(d ln P/dr)e − (d ln T/dr)e]
⋅ (dρ/dr)s = ρ[(d ln P/dr)s − (d ln T/dr)s]

Δρ = [−ρ(d ln T/dr)e + ρ(d ln T/dr)s]Δr

∂2
t Δr = − (g/HP)[∇ad − ∇s]Δr

δ ≡ ∇s − ∇ad > 0

Δρ = ρ[(d ln T/d ln P)e − (d ln T/d ln P)s]Δr/HP

= ρ[∇e − ∇s]Δr/HP

σ = (g/HP)δ

g

P(r), ρ(r),

Δr > 0

ρ + Δρ
T + ΔT

P + ΔP

e

s

e

変位

(fluid element)

r

(surroundings)

T(r)

(adiabaticity)

⇆ （線形成長率）



乱流エネルギー輸送と混合距離理論
●対流が運ぶ乱流エネルギーフラックス(TEF)：Fcv ∝ ρ⟨ΔvΔT⟩ ただし, はアンサンブル平均⟨ ⋅ ⟩

●前述の線形理論に基づきTEFを記述する枠組み：混合距離理論 (Mixing-length theory: MLT)

, Δv ≈ σ × lm  ΔT/T ≈ Δρ/ρ = δlm/HP δ(      : adiabaticity)

 は任意のパラメータで混合距離と呼ばれる (ここで行っているのは の置き換え). lm Δr → lm
混合距離（～エネルギーの典型的な輸送距離）として,  を選ぶと, TEFは, lm ∼ HP

Fcv ∝ ρ (σHPδ)T
と書き換えられる.

σ = (g/HP)δwhere

δ = ∇s − ∇ad

- ある半径における密度と圧力：ρ(r), T(r)
- ある半径でのadiabaticity：δ
- ある半径でのスケールハイト：HP(r)

(全て局所的に与えられる量)

Δρ = ρ[∇e − ∇s]lm /HP

浮力が生じる典型的なスケールが  : HP

→  のサイズの渦による輸送描像.  HP

スケールハイトは
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太陽磁場の観測
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太陽黒点の特徴 ： 大局性・収束性・周期性
©J. Okamoto

太陽磁場（黒点）の3つの特徴

プラズマ物理（MHD）のフレームワークで 

これらの「内部流れ場」および「磁場」の観測結果を説明しなければならない. 

① 大局性 ： 黒点 ≫ 対流セル（粒状斑） 

③ 周期性 :  
  - 11年周期 (22年周期） 
　  (×  ランダムな磁場)　

② 収束性（集中性） ： 局在化　 
                      （× diffuse structure）

：5つの経験則
（次ページ）

黒点 ： 暗部 + 半暗部



太陽磁場の5つの経験則と例外(マウンダー極小期)

約70年

互作用（“局所ダイナモ”と呼ばれることもある）によって

生成されると考えられている［８‐１０］．一方，後者の代表が

黒点であり，数キロガウス（１ガウス＝１０－４テスラ）の空

間的にコヒーレントな磁場からなる［１１‐１３］．

黒点の典型的なサイズは!（１０）Mm（メガメートル）で，

粒状斑の典型的スケール（～１Mm）と比べると遥かに大

きい．粒状斑のもつ運動エネルギーと等分配な磁場強度は

!（１００）ガウスなので，黒点では強い磁場によって対流が

抑制される（対流による熱輸送が抑制され，静穏領域と比

べて相対的に温度が低くなるため，黒点は黒く見える）．

表面近傍の対流では，黒点のような大局的かつ強い磁場の

形成を担うことができない．そのため，黒点の形成領域は

必然的に太陽内部に求められることになる．

太陽黒点は空間的コヒーレンスだけではなく，時間的コ

ヒーレンスにも特徴があり，以下のような規則性をもつこ

とが経験的に知られている［１４‐１８］：

（１）黒点は正極と負極の双極（対）構造で出現する．

（２）黒点対を結ぶ軸は東西方向から約５度傾いている．

（３）黒点数は約１１年周期で増減を繰り返す．

（４）黒点対の極性は南北反対称で周期ごとに反転する

（極性反転を考慮すると太陽サイクルは約２２年）．

（５）黒点の出現緯度は時間とともに中緯度から赤道へ向

かってドリフトする．

太陽黒点の経験則を図２にまとめる．
太陽ダイナモ理論は，これらの観測結果の全てを物理無

矛盾かつ定量的に説明できるものでなくてはならない．た

とえ物理的には正しいダイナモ理論であったとしても，こ

れらの観測結果を説明できない理論は『太陽』のダイナモ

理論としては相応しくない．科学の歴史は，天体の観測結

果を説明するための試行錯誤が，新たな物理を構築するた

めの土壌になってきたことを我々に教えてくれる．そのよ

うな視座に立てば，観測と理論の両面から反復的かつ定量

的にダイナモ理論を検証できる太陽は，天体ダイナモ機構

を理解するための絶好の実験場だといえよう．

４．２．２ 太陽内部構造と内部平均流分布
身近にある太陽といえども，光球より内側で起こるダイ

ナモ過程を直接観測することはできない．しかし，太陽の

内部構造とエネルギー変換を媒介する太陽内部のプラズマ

の流れは，日震学（Helioseismology）手法で精密に測定され

ている［１９‐２１］．日震学とは，太陽表面の振動を観測する

ことで内部構造を探る手法であり，波の振動数の観測値か

ら非摂動状態を探る一種の逆線形解析（固有値問題の逆問

題を解く）手法である．日震学には，太陽の固有振動モー

ドから大域的な内部構造を探る「グローバル日震学」と，

波の伝搬時間と距離の関係から局所領域の構造や流れの様

子を描き出す「局所日震学」の二種類がある（局所日震学

は今世紀に入って進展した比較的新しい測定手法である）．

まずグローバル日震学が明らかにした太陽内部構造と内

部平均流分布をまとめよう［１９，２０］．平均流とは，時間・方

位角平均をとって得られる流れの大局成分のことである．

図３a で模式的に示すように，太陽内部は（１）赤道加速型の

図２ 太陽黒点の観測的性質：（a）Hale-Nicolson’s law & Joy’s
law【経験則（１）と（２）】，（b）Schwabe’s law【経験則（３）】，
（c）Carrington-Sporer’s law【経験則（４）と（５）】．図（c）で
は方位角平均をとった磁場の時間‐緯度進化を示している．

図３ （a）日震学によって確立された太陽内部構造と内部平均流
分布（子午面を図示）．実線が等角速度線，太矢印が観測さ
れている対流層上部の子午面流を表す．（b）磁束輸送ダイ
ナモモデルの模式図．破線は想定されている子午面循環
流．対流層上部の子午面流は観測されているが，深部の赤
道向きの流れは理論予測であることに注意が必要である．
（１）タコクラインでは!効果で Bp成分から B"成分が生成
される．増幅された B"成分は，その強度が臨界値（約
105 G）を越えると，十分な磁気浮力を得て太陽表面へ向
かって浮上を開始する．（２）浮上する磁束管にはコリオリ
力が働くので，浮上中にB"成分からBp成分が生成される．
強い磁場からなる磁束管は対流によって壊されることなく
太陽表面まで浮上し，最終的に黒点を形成する．（３）浮上
過程で生成されたBp成分が，子午面循環流によってタコク
ライン層に再注入され，ダイナモループが閉じる［（１）に戻
る］．
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※グランドミニマム期の存在

互作用（“局所ダイナモ”と呼ばれることもある）によって

生成されると考えられている［８‐１０］．一方，後者の代表が

黒点であり，数キロガウス（１ガウス＝１０－４テスラ）の空

間的にコヒーレントな磁場からなる［１１‐１３］．

黒点の典型的なサイズは!（１０）Mm（メガメートル）で，

粒状斑の典型的スケール（～１Mm）と比べると遥かに大

きい．粒状斑のもつ運動エネルギーと等分配な磁場強度は

!（１００）ガウスなので，黒点では強い磁場によって対流が

抑制される（対流による熱輸送が抑制され，静穏領域と比

べて相対的に温度が低くなるため，黒点は黒く見える）．

表面近傍の対流では，黒点のような大局的かつ強い磁場の

形成を担うことができない．そのため，黒点の形成領域は

必然的に太陽内部に求められることになる．

太陽黒点は空間的コヒーレンスだけではなく，時間的コ

ヒーレンスにも特徴があり，以下のような規則性をもつこ

とが経験的に知られている［１４‐１８］：

（１）黒点は正極と負極の双極（対）構造で出現する．

（２）黒点対を結ぶ軸は東西方向から約５度傾いている．

（３）黒点数は約１１年周期で増減を繰り返す．

（４）黒点対の極性は南北反対称で周期ごとに反転する

（極性反転を考慮すると太陽サイクルは約２２年）．

（５）黒点の出現緯度は時間とともに中緯度から赤道へ向

かってドリフトする．

太陽黒点の経験則を図２にまとめる．
太陽ダイナモ理論は，これらの観測結果の全てを物理無

矛盾かつ定量的に説明できるものでなくてはならない．た

とえ物理的には正しいダイナモ理論であったとしても，こ

れらの観測結果を説明できない理論は『太陽』のダイナモ

理論としては相応しくない．科学の歴史は，天体の観測結

果を説明するための試行錯誤が，新たな物理を構築するた

めの土壌になってきたことを我々に教えてくれる．そのよ

うな視座に立てば，観測と理論の両面から反復的かつ定量

的にダイナモ理論を検証できる太陽は，天体ダイナモ機構

を理解するための絶好の実験場だといえよう．

４．２．２ 太陽内部構造と内部平均流分布
身近にある太陽といえども，光球より内側で起こるダイ

ナモ過程を直接観測することはできない．しかし，太陽の

内部構造とエネルギー変換を媒介する太陽内部のプラズマ

の流れは，日震学（Helioseismology）手法で精密に測定され

ている［１９‐２１］．日震学とは，太陽表面の振動を観測する

ことで内部構造を探る手法であり，波の振動数の観測値か

ら非摂動状態を探る一種の逆線形解析（固有値問題の逆問

題を解く）手法である．日震学には，太陽の固有振動モー

ドから大域的な内部構造を探る「グローバル日震学」と，

波の伝搬時間と距離の関係から局所領域の構造や流れの様

子を描き出す「局所日震学」の二種類がある（局所日震学

は今世紀に入って進展した比較的新しい測定手法である）．

まずグローバル日震学が明らかにした太陽内部構造と内

部平均流分布をまとめよう［１９，２０］．平均流とは，時間・方

位角平均をとって得られる流れの大局成分のことである．

図３a で模式的に示すように，太陽内部は（１）赤道加速型の

図２ 太陽黒点の観測的性質：（a）Hale-Nicolson’s law & Joy’s
law【経験則（１）と（２）】，（b）Schwabe’s law【経験則（３）】，
（c）Carrington-Sporer’s law【経験則（４）と（５）】．図（c）で
は方位角平均をとった磁場の時間‐緯度進化を示している．

図３ （a）日震学によって確立された太陽内部構造と内部平均流
分布（子午面を図示）．実線が等角速度線，太矢印が観測さ
れている対流層上部の子午面流を表す．（b）磁束輸送ダイ
ナモモデルの模式図．破線は想定されている子午面循環
流．対流層上部の子午面流は観測されているが，深部の赤
道向きの流れは理論予測であることに注意が必要である．
（１）タコクラインでは!効果で Bp成分から B"成分が生成
される．増幅された B"成分は，その強度が臨界値（約
105 G）を越えると，十分な磁気浮力を得て太陽表面へ向
かって浮上を開始する．（２）浮上する磁束管にはコリオリ
力が働くので，浮上中にB"成分からBp成分が生成される．
強い磁場からなる磁束管は対流によって壊されることなく
太陽表面まで浮上し，最終的に黒点を形成する．（３）浮上
過程で生成されたBp成分が，子午面循環流によってタコク
ライン層に再注入され，ダイナモループが閉じる［（１）に戻
る］．
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Polar field reversal as observed with Hinode極域磁場

極域磁場の構造：

Ito & Tsuneta 10 

140 ITO ET AL. Vol. 719

vertical polar
horizontal polar
vertical quiet Sun
horizontal quiet Sun

Figure 9. Areal fraction of the intrinsic magnetic field strength. The red and
blue lines represent the north polar region and the quiet Sun at the east limb,
respectively. The solid and dashed lines represent the magnetic fields classified
as vertical and horizontal in this work (see Section 3.1 for details), respectively.
Vertical magnetic field has a sign that indicates either plus or minus polarities,
while horizontal magnetic field does not have sign. Vertical axis is the number of
pixels divided by total number of pixels (including the pixels for which inversion
is not performed) in the respective FOV.

be considerably different between the two regions: the sample
data set tabulated in Table 1 shows that kilo-Gauss magnetic
concentrations in the polar region have a factor of 3.3 larger
average area and a factor of 4.8 larger total magnetic flux than
those in the quiet Sun. The number of the kG-patches in the
polar region appears to be larger than that of the quiet Sun.

polar region

quiet Sun

Figure 10. Fractional number of pixels that have negative vertical magnetic
field with the intrinsic strength stronger than the value in the horizontal axis;
North polar region (bold line) and the quiet Sun at east limb (broken line).

The origin and/or evolution of the kG-patches would be
different between the polar region and the quiet Sun. The
different properties of the kG-patches in the polar regions and
the quiet Sun could be due to the different environment in
which they evolve. There may be a higher chance in the quiet
Sun that the positive and negative patches collide, reconnect,
and lose magnetic energy or submerge as a result. As such,
the environment in the quiet Sun may not allow the elemental
magnetic concentrations to grow.

Figure 11. Coronal magnetic field structure with the data shown in Figures 4 and 6 for the quiet Sun at the east limb (lower panel) and the north polar coronal hole
(upper panel), respectively. The color of the magnetic patches indicates intrinsic field strength of the magnetic field vectors classified as vertical. The red patches are
positive magnetic concentrations, and the blue ones are negative.

× 一様な磁場　→ 双極磁場

◯ kGパッチ　  → 双極磁場



太陽MHDを考える上で 

頭に入れておくべき基礎知識



Figure 1. (a) Radial profiles of magnetic diffusivity η used in various models. Shown is the
double-step profiles used in the Babcock-Leighton models of [7] and similar to that used in
[6, 27] (MF,- - - -). Three profiles from 3D MHD ASH dynamos are shown for comparison;
these correspond to cases D3, D5 and D10 (grey lines). The molecular diffusivity for a hydrogen
plasma at solar conditions is also shown, multiplied by 107 for display purposes. (b) The Prandtl
number Pr = ν/κ (dashed) and magnetic Prandtl number Pm = ν/η (solid) for a hydrogen
plasma at solar conditions. Simulations use values of order unity.

and latitude in the Sun; how α varies with stellar properties such as rotation rate and mass; the
applicability of α-effects to modeling the turbulent induction observed in 3D models; etc.). We
turn now to a discussion of fully non-linear 3D convection driven dynamos, which are beginning
to provide the opportunity to better constrain these unknown quantities.

3. The gap between simulations and the Sun
Numerical studies of the solar dynamo have a rich history, with the the first 3D
magnetohydrodynamic (MHD) convective global-scale solar dynamo simulations attaining cyclic
behavior in the early studies of Gilman [28]. Those Boussinesq simulations were quickly joined
by fully non-linear global-scale anelastic simulations, which captured the stratified nature of the
solar convection zone as well [29, 30]. Computational resources have grown at a tremendous
rate, and with them the complexities of the models studied. Modern simulations typically have
higher resolutions and evolve for longer intervals of time; in one simulation we will examine later
(case D5), this represents roughly a factor of a million more computation than was possible in
early studies [28]. This is is in surprisingly good agreement with Moore’s law doubling over
the almost thirty year interval separating these simulations, but it helps clarify the huge gap
remaining between solar convection and the highest resolution simulations: another century of
growth might provide the resources to directly simulate solar convection on global-scales.

Stellar convection spans a vast range of spatial and temporal scales which remain well
beyond the grasp of direct numerical simulation. Models of stellar dynamos must make various
tradeoffs, either building up from the diffusive scales or building down from the global-scales.
These are respectively called local or global simulations; the latter will be our focus here.
The highest resolution modern 3D simulations, running on massively parallel supercomputers,
capture roughly 10003 total points and typically can evolve for some 106−107 timesteps. In the
Sun, the smallest scales of motion are set by diffusion and are likely of order 1 mm [e.g., review
31] while the largest scales or motion are comparable to the solar radius (700 Mm), with a total
spectral range of almost 1012 in each of three dimensions. Temporal separations are similar,
with fast granulation on the surface overturning on roughly five minute timescales while the
deep structure of the Sun evolves over a span of gigayears.

Brown,B 2010
3D sim

10桁

現実

太陽プラズマを考える上で必要な補足情報①

太陽プラズマ(対流層)を 

特徴づける無次元パラメータ：

Re   = 1012 - 1014

Ra   = 1022 - 1024

Pr    = 10-6 - 10-5

Prm  = 10-5 - 10-2

Ek    = 10-15  (=Ro/Re)

対流層の密度コントラスト：7桁 
0.2g/cm3 @底, 2×10-6 g/cm3@光球

ReM = 108 - 1010
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太陽プラズマを考える上で必要な補足情報②

in dynamo models (e.g., Christensen and Aubert, 2006; Olson and
Christensen, 2006). As indicated by the Elsasser number, the Lor-
entz force is significant for the Earth and the gas giants, but may
be less so for the other planets. It is often assumed that the planets
are in magnetostrophic balance where the Lorentz and Coriolis
forces are comparable (e.g., Stevenson, 2003). The low K estimates
for Mercury, Ganymede, and the ice giants, however, do not sup-
port this hypothesis. Recent dynamo modeling results further dis-
pute the prevalence of magnetostrophic balance (e.g., Christensen
and Aubert, 2006; Soderlund et al., in review). The magnetic Pra-
ndtl numbers much less than unity suggest a separation of scales
between the magnetic and velocity fields where the magnetic flux
patches are large compared to the flow eddies. However, the
dynamical implications of low viscosity and rapid rotation on con-
vection and dynamo action are not well understood since it is dif-
ficult to study low Pm, low E systems.

3.3. Methods

Numerical models and laboratory experiments are valuable
tools to better understand the dynamics of planetary interiors.
Both approaches, however, are unable to reach the extreme plane-
tary parameter values due to computational and technological lim-
itations. Fortunately, many systems exhibit asymptotic behavior at
large or small values of the control parameters (e.g., Christensen
and Aubert, 2006; Aurnou, 2007; King et al., 2010). Large surveys
are carried out to map the behavioral regimes and to determine
how the control parameters influence the dynamics. With these
surveys, it is possible to develop scaling laws to quantify how
the dynamics (e.g., magnetic field strength, flow speeds, heat trans-
fer efficiency) depend on the control parameters. Researchers then
attempt to develop asymptotic scaling laws which can be extrapo-
lated to planetary conditions. For a recent review of scaling laws,
see Christensen (2010). Moreover, numerical models have shown
that convectively-driven dynamos in rotating spherical shells are
able to generate some of the key features of the planetary magnetic
fields (e.g., Stanley and Bloxham, 2004; Sakuraba and Roberts,
2009; Stanley and Glatzmaier, 2010). Recent planetary dynamo
models are summarized in the next section.

4. Planetary dynamo models

4.1. Terrestrial planets and Ganymede

In this section we discuss the modeling that has been carried
out to understand the dynamos in planets with molten iron-alloy
cores. The objects include the terrestrial planets, except for Venus,
and the outer planet satellite Ganymede. There is an enormous lit-
erature on the modeling of Earth’s dynamo and with our primary
focus being the magnetic fields of the other planets, we do not at-

tempt to review the geodynamo literature here. Instead we focus
on recent modeling attempts to explain the magnetic fields of Mer-
cury and Ganymede. Models of the ancient Martian dynamo will
also be discussed. See Kono and Roberts (2002), Glatzmaier
(2002), and Wicht et al. (2009) for reviews of geodynamo models.

4.1.1. Mercury
Dynamo modeling of Mercury’s magnetic field has focused on

explaining why it is so weak. Mercury’s magnetic dipole moment
is about 3.3 ! 4.2 " 1019 Am2 (Anderson et al., 2008). Compared
with Earth’s magnetic dipole moment of 7.8 " 1022 Am2, Mercury’s
moment is only about 5 " 10!4 that of Earth. Further, Mercury’s
magnetic dipole moment is about half that of Ganymede, which
is 1.32 " 1020 Am2, even though Ganymede, stripped of its ice
shell, has a radius only about 75% of Mercury’s radius. It has been
proposed that a stably-stratified layer at the top of the liquid part
of Mercury’s core might be responsible for weakening the external
dipole field (Christensen, 2006; Stanley and Mohammadi, 2008). In
the Christensen (2006) model, this weakening is due to attenuation
of the internally generated field by the electrically conducting sta-
ble layer. The Stanley and Mohammadi (2008) model emphasizes
the importance of thermal winds in the stable layer that induce
unfavorable zonal flows throughout the liquid part of the core. In
their models, the magnetic field is strongly time variable and the
external dipole can be either weak or strong. Another possible
explanation is the thickness of the liquid part of Mercury’s core
within which the dynamo operates. Dynamo action in a thin shell
can produce weak external dipole fields (Stanley et al., 2005;
Takahashi and Matsushima, 2006), while Heimpel et al. (2005b)
have produced single plume dynamos in a thick shell that are also
consistent with Mercury’s weak magnetic field.

Yet another explanation for Mercury’s weak magnetic field in-
volves the self-interaction of its internal dynamo with the magne-
tosphere created around the planet by the dynamo itself, a type of
feedback effect (Glassmeier et al., 2007; Gomez-Perez and
Solomon, 2010; Gomez-Perez and Wicht, 2010). Mercury is effec-
tively embedded in an external magnetic field generated by Chap-
man-Ferraro currents in its magnetopause. This self-generated
ambient magnetic field influences the dynamics of the internal
dynamo, similar to the way the Jovian magnetic field influences
dynamo action in Jupiter’s moon Ganymede (Sarson et al., 1997).
Chapman-Ferraro currents generate a magnetic field that enhances
the magnetospheric field and tends to cancel the field outside the
magnetosphere. In the dynamo region, the Chapman-Ferraro field
opposes the dynamo-generated field so that the dynamo is embed-
ded in an ambient field of opposite polarity. Glassmeier et al.
(2007) use a kinematic a–X-dynamo model to show that the feed-
back dynamo indeed has a Mercury-type solution with a weak
magnetic field. Recent self-consistent dynamo models with im-
posed external magnetic fields also support strong magnetospheric
feedback on weak internal fields (Gomez-Perez and Solomon,
2010; Gomez-Perez and Wicht, 2010).

The possibility that solid iron precipitation in Mercury’s core oc-
curs differently than it does in Earth’s core provides another feasi-
ble explanation for Mercury’s weak magnetic field (Vilim et al.,
2010). Laboratory experiments have shown that the Fe-S system
behaves in a non-ideal way at temperatures and pressures likely
encountered in Mercury’s core for sulfur concentrations between
about 7 and 12 wt% (Chen et al., 2008). As a consequence, iron
could precipitate at different places in the core depending on the
sulfur concentration; an Fe snowfall could originate from the top
or the mid-point of the core or from both locations. When Fe
freezes out at both the top and midway through the core, there
are two sources of compositional buoyancy, the heavy iron sinking
from the top of the core and from below mid-depth and the light S-
rich fluid rising above mid-depth. Vilim et al. (2010) modeled

Table 4
Order of magnitude estimates of key dimensionless parameters for the planets’
dynamo regions. Rm = 102 is assumed to estimate lower bounds for Re = Rm/Pm and
Ro = ReE. The K values neglect contributions from the toroidal field and the
unresolved poloidal components, which likely increase the estimate by an order of
magnitude.

Dynamo E Pr Pm Rm Ro Re K RDI/
RD

RD/
RP

Mercury 10!12 0.1 10!6 102 10!4 108 10!5 0.6 0.75
Earth 10!15 0.1 10!6 102 10!7 108 0.1 0.35 0.55
Jupiter 10!19 0.1 10!7 102 10!10 109 1 0.2 0.95
Ganymede 10!13 0.1 10!6 102 10!5 108 10!3 0 0.2
Saturn 10!18 0.1 10!7 102 10!9 109 0.01 0.5 0.5
Uranus 10!16 10 10!8 102 10!6 1010 10!4 0.6 0.8
Neptune 10!16 10 10!8 102 10!6 1010 10!4 0.4 0.8

100 G. Schubert, K.M. Soderlund / Physics of the Earth and Planetary Interiors 187 (2011) 92–108

(ref. Schubert & Soderlund 2011)

Sun 10910-510-7 10-110-13

(ref. Kapyla 2011)
1013

※Ek ～ Ro/Re（図中の黄色点線はEk一定の線）

Ro-Re相図：太陽系天体（太陽・惑星）および宇宙物理的天体（恒星・降着円盤）の位置関係

・ 恒星や太陽のプラズマの流れは, 惑星内部の流れに比べて比較的小さなRo  

Ro ≡
V

2ΩL
= 慣性力 (V2/ l)

コリオリ力 (2ΩV)

・ 恒星や太陽のプラズマの流れは, 惑星内部の流れに比べて比較的大きなRe  

→ 太陽はslow rotator ↔︎ 慣性力のダイナミクスへの影響が大きい

→ 激しい乱流状態
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天体プラズマの特徴と磁場の普遍性

earth

ITER

100

Hillas plot (1984)：
- あらゆるスケールの

   天体プラズマに磁場が存在
- 規則性： サイズ↓磁場↑

∴ B ∝ S−1 ∝ L−2

B ∝ L−α

α = 2

α = 1.5

α = 1

- 全体的に見れば観測は  を示唆α ≈ 1
- 天体が密度の高い状態に進化する
につれて, 磁場が散逸していく描像

- 天体の進化 ⇆ 重力収縮
銀河（星間ガス） 

　        → 恒星 

　　        → コンパクト天体 
重力収縮

CMB

重力収縮

- 磁束保存則（理想MHD）：
dΦ
dt

=
d
dt ∫ B ⋅ dS = 0

(理論予測)

↔ B ∝ L−α

- 一方, 星→コンパクト天体のレジーム

(for fitting)

では . 第0近似では磁束保存でOK. α ≈ 2

高温・高密. 磁場と

プラズマのcoupling良

→ ほぼ磁束保存でOK

低温・低密. 磁場と

プラズマがdecouple 

→ 磁束が散逸
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Unsolved Issue ① Origin of Conical ProfileUnsolved Issue ① Origin of Conical Profile
1986ApJS...61..585G

■ Before helioseismology,

- cylindrical profile is expected.

- i.e., Taylor-Proudmann state.

- Why conical in the actual Sun ? 

Gilman & Miller 1986

Howe+ 2003
(helioseismology)

Discuss later in more detail.



Unsolved Issue ① Origin of Conical ProfileUnsolved Issue ② Origin of Thin Tachocline

“ Tachocline ” (Spiegel & Zahn 1992)  

: A transition layer from the  
  differentially rotating convectively   
  unstable envelope to the rigidly  
  rotating, convectively stable region.

 Why does the tachocline  
 becomes a issue ?

Q:

Because it is too thin, physically.A:



Unsolved Issue ① Origin of Conical ProfileUnsolved Issue ② Origin of Thin Tachocline

stationary 
state

t = 0 t = t1 t = t2

1. Because of the diffusivities (such as viscosity and conductivity),  
    the initially stationery fluid is dragged by the overlying moving fluid.

2. The region with moving fluid gradually spread with a diffusion time 
    if the velocity of the overlying moving fluid is maintained.

In the case of the Sun with the age t ~ 4.5 G years,

diffusion length: ldiff  ~ (νt)1/2  [ν: diffusivity, t: time]  

ldiff

ldiff

ldiff ~ 0.3Rsun >> tachocline thickness with O(10-2) Rsun

→   Tachocline confinement problem (Spiegel & Zahn 1992;  
 Gough & McIntyre 1998,  
 Hughes et al. 2007 ....etc.... )

Suppose the situation with a moving fluid layer overlying the stationary fluid layer



① Convection envelope 
: Differential Rotation

- Equatorial acceleration

- Conical iso-rotation profile

② Tachocline (※ convectively stable)

: Differential Rotation

③ Radiative Zone 
: Rigid Rotation

Howe+ 2003

Unsolved Issue ① Origin of Conical ProfileBrief Summary 1  - Solar Internal Rotation -

※ There are three characteristic layers:

※ There are two important unsolved issues:

(1) Origin of conical profile

(2) Origin of thin tachocline

P~25days

P~35days



~ MHD effects are ignored here ~ 
~ Differential rotation in the CZ is highlighted here ~ 

Contents

1. Solar Rotation Profile, and Unsolved Issues

2. Basic Hydrodynamics in the Solar Interior

3. Recent Progress and Future Prospects

2-1. Properties of the Solar Convection 
2-2. Angular Momentum Transport in the Sun

3rd East-Asian School and Workshop on Laboratory, Space, Astrophysical Plasmas



The rotating stratified convection  
transports angular momentum in the Sun

To deepen the understanding of the rotation profile, we should 
begin with the physical properties of the convection in the Sun.

Masada et al. (2013)
＠0.85Rsun

A similar convective motion (@mid-CZ) is commonly observed in the 
simulation of the other groups.
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Fig. 4.— Distribution of radial velocity on spherical surfaces at sampled radii vr(θ, φ) when t = 330τc (in the Mollweide projection).
Panels (a)–(c) correspond to the radii r = 0.95R, 0.85R and 0.72R for Model A, and panels (d)–(f) are those for Model B. The orange and
blue tones depict upflow and downflow velocities normalized by vrms = 0.03.
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Fig. 5.— Radial profile of the mean radial velocity ⟨⟨v2
r⟩s⟩1/2.

The time average spans in the range of 300τc ≤ t ≤ 400τc. The
vertical axis is normalized by vrms = 0.03. The red-solid and blue-
dashed curves correspond to the models A and B, respectively. The
vertical dashed line denotes the base of the convection zone.

Figure 3 shows the temporal evolution of the volume-
averaged kinetic and magnetic energies defined by

ϵkin =
∫

1
2
ρv2dV

/ ∫
dV , ϵmag ≡

∫
B2

2µ0

/ ∫
dV ,

(10)
for Models A and B. The red and orange curves corre-
spond to those for Model A. The blue and green curves
are for Model B. After the convective motion sets in, it
reaches a nonlinear saturation state at around t = 50τc.
The saturation levels of the convection kinetic energy for
Models A and B are almost the same. The mean veloc-
ity is vrms = 0.03 which yields Beq = 0.02, Co = 8.0
and τc = 10.0 for both models. We have run the simula-
tions till 500τc and then compare physical properties of
convections, mean flows and magnetic dynamos between
two models.

To examine the convective and magnetic structures in
detail, we define the following four averages of a function
h(θ,φ) on a sphere.

The latitudinal average:

⟨h⟩θ ≡ 1
2

∫ 1

−1
h(θ, φ) d cos θ , (11)

The longitudinal average:

⟨h⟩φ ≡ 1
2π

∫ π

−π
h(θ,φ) dφ , (12)

The spherical average:

⟨h⟩s ≡ 1
4π

∫ 1

−1

∫ π

−π
h(θ, φ) d cos θdφ , (13)

The northern hemispheric average:

⟨h⟩+ ≡ 1
2π

∫ 1

0

∫ π

−π
h(θ, φ) d cos θdφ . (14)

Note that the time-average of each spatial mean is de-
noted by additional angular brackets, such as ⟨⟨h⟩θ⟩.

3.1. Properties of Convective Motion
Figure 4 shows, in the Mollweide projection, the dis-

tribution of the radial velocity when t = 330τc on spher-
ical surfaces at different depths for two models. Pan-
els (a)–(c) correspond to the depths r = 0.95R, 0.85R
and 0.72R for Model A, and panels (d)–(f) are those
for Model B. The orange and blue tones depict upflow
and downflow velocities. At the upper (r = 0.95R) and
mid (r = 0.85R) convection zones, the convective motion
is characterized by upflow dominant cells surrounded by
networks of narrow downflow lanes for both models. The
higher the latitude, the smaller the convective cell pre-
vails. Elongated columnar convective cells aligned with
the rotation axis appear near the equator. These are
the typical features observed in rotating stratified com-
pressible convection (e.g., Spruit et al. 1990; Miesch et
al. 2000; Brummell et al. 2002; Brun et al. 2004). In
panel (c), we find that the downflow lanes persist the
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The time average spans in the range of 300τc ≤ t ≤ 400τc. The
vertical axis is normalized by vrms = 0.03. The red-solid and blue-
dashed curves correspond to the models A and B, respectively. The
vertical dashed line denotes the base of the convection zone.

Figure 3 shows the temporal evolution of the volume-
averaged kinetic and magnetic energies defined by

ϵkin =
∫

1
2
ρv2dV

/ ∫
dV , ϵmag ≡

∫
B2

2µ0

/ ∫
dV ,

(10)
for Models A and B. The red and orange curves corre-
spond to those for Model A. The blue and green curves
are for Model B. After the convective motion sets in, it
reaches a nonlinear saturation state at around t = 50τc.
The saturation levels of the convection kinetic energy for
Models A and B are almost the same. The mean veloc-
ity is vrms = 0.03 which yields Beq = 0.02, Co = 8.0
and τc = 10.0 for both models. We have run the simula-
tions till 500τc and then compare physical properties of
convections, mean flows and magnetic dynamos between
two models.

To examine the convective and magnetic structures in
detail, we define the following four averages of a function
h(θ,φ) on a sphere.

The latitudinal average:

⟨h⟩θ ≡ 1
2

∫ 1

−1
h(θ, φ) d cos θ , (11)

The longitudinal average:

⟨h⟩φ ≡ 1
2π

∫ π

−π
h(θ,φ) dφ , (12)

The spherical average:

⟨h⟩s ≡ 1
4π

∫ 1

−1

∫ π

−π
h(θ, φ) d cos θdφ , (13)

The northern hemispheric average:

⟨h⟩+ ≡ 1
2π

∫ 1

0

∫ π

−π
h(θ, φ) d cos θdφ . (14)

Note that the time-average of each spatial mean is de-
noted by additional angular brackets, such as ⟨⟨h⟩θ⟩.

3.1. Properties of Convective Motion
Figure 4 shows, in the Mollweide projection, the dis-

tribution of the radial velocity when t = 330τc on spher-
ical surfaces at different depths for two models. Pan-
els (a)–(c) correspond to the depths r = 0.95R, 0.85R
and 0.72R for Model A, and panels (d)–(f) are those
for Model B. The orange and blue tones depict upflow
and downflow velocities. At the upper (r = 0.95R) and
mid (r = 0.85R) convection zones, the convective motion
is characterized by upflow dominant cells surrounded by
networks of narrow downflow lanes for both models. The
higher the latitude, the smaller the convective cell pre-
vails. Elongated columnar convective cells aligned with
the rotation axis appear near the equator. These are
the typical features observed in rotating stratified com-
pressible convection (e.g., Spruit et al. 1990; Miesch et
al. 2000; Brummell et al. 2002; Brun et al. 2004). In
panel (c), we find that the downflow lanes persist the

Properties of the Solar Convection

The rotating stratified convection transports A.M.

Masada et al. (2013)

The solar convective motion is characterized by
(1) Narrower & faster downflow + broader & slower upflow
(2) Elongated convective cells aligned with the rotation axis

To deepen the understanding of the rotation profile, we should 
begin with the physical properties of the convection in the Sun.

: solar convection profile has asymmetric features.



These are the reason why the up-down asymmetry arises in the solar 
convection (→ Narrower & Faster downflow + Broader & Slower Upflow).

■ Effects of the stratification on the convection

     (buoyancy braking) Vz
upflow = diverging flow

δT < 0
δP < 0

ambient

δT > 0
δP > 0

ambient

downflow = converging flow
     (buoyancy acceleration)

The downflow region is thus narrower than the upflow region.

※ The conservation of the mass flux:

∇・(ρu) dV ∫ =       ρur ΔS = 0 Σ
∴ udown/uup ~ -Sup/Sdown > 1

The faster downflow is a natural outcome of the stratified convection.

Side View
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Effects of the Stratification - up-down asymmetry -

 (Spruit et al. 1990 for review)

(Sup = ΣΔSup, Sdown = ΣΔSdown) 

ΔSup ΔSdown



Effects of the Rotation ① Helical motion

Vz

Side View

Top View

ΩΩ

Coriolis force acts on 
the diverging motion 
and induces C.W. motion.

Coriolis force acts on 
converging motion and 
induces C.C.W. motion

■ Coriolis force → helical convective motion. 
■ CCW motion of the downflow >> CW motion of the upflow 
   (because of the up-down asymmetry).

■ Effects of the rotation on the convection ①

δT < 0
δP < 0

ambient

δT > 0
δP > 0

ambient

     (buoyancy braking)
upflow = diverging flow

gr
av

ity

downflow = converging flow
     (buoyancy acceleration)

gr
av

ity

 (Spruit et al. 1990 for review)

Ω Ω



Effects of the Rotation ② Alignment

■ Effects of the rotation on the convection ②

z=0

z=1

x
y

zΩ

No. 1, 1996 TURBULENT COMPRESSIBLE CONVECTION WITH ROTATION. I. 509

FIG. 12a FIG. 12b

FIG. 12.ÈSketches of the rotational inÑuence on laminar and turbulent convective Ñuid trajectories. (a) In laminar cases, the horizontal component of)
ythe rotation vector acting on the dominant buoyancy-driven vertical motions leads to tilting of the trajectories, yielding correlations between the u and w

components of motion. These could serve to drive zonal mean Ñows. (b) In turbulent cases, coherent chimneys of strong vortical downÑow become aligned
with the tilted rotation vector, whereas the smaller scale motions are little inÑuenced by Coriolis forces. The aligned structures possess correlations between
the v and w components of motion which are sources for meridional mean Ñows.

structure clearly spiral parallel to the rotation axis. Such
complexity here may be contrasted with the simple linear
streamlines of the laminar Boussinesq Ñows in &Hathaway
Somerville Laminar trajectories are not parallel to(1983).
the rotation vector (although cell boundaries may be, for
example in pure zonal rolls), whereas particle paths within
structures in a turbulent Ñow are aligned with ) (when
averaged over the trajectory to remove the spiraling
oscillations).

The new turbulent alignment of coherent structures
appears to arise more as a natural consequence of the pres-
ence of a rotational direction among isotropic turbulent
motions than as an action or instability of pre-existing
vortex tubes in a rotating Ñow. Further work to clarify this
is in progress Julien, & Rast(Brummell, 1996b). Figure 14
outlines a mechanism for the rotational alignment of Ñuid

FIG. 13.ÈThe helical winding of Ñuid trajectories is evident in a close-
up view of a typical strong downÑowing plume in a strongly rotating
simulation R4. Shown are particle streamlines determined by advecting
tracers with one snapshot of the velocity ⌫eld as if it were a steady Ñow.
The view encompasses the full depth of the layer, but only one-third of the
extent in each of the horizontal directions.

parcels. The Ñow in general is driven by low entropy Ñuid
leaving the upper boundary due to the e†ects of buoyancy.
If the rotation vector is not aligned with gravity, then a
vertical motion may be considered as the superposition of
two orthogonal motions, one parallel to X and one perpen-
dicular, say and respectively. The former will experi-w

A
w

M
,

ence no acceleration due to Coriolis forces, whereas the
latter will feel a force which will tend to move a particle in
an inertial circle in the plane perpendicular to the rotation
vector. If then more than one inertial oscillation canR0 \ 1
be performed during the vertical transit and the sum of
these two motions would be a spiral parallel to X.

Since this mechanism works on particle or parcel trajec-
tories, the question is then to determine what distinguishes
laminar Ñows from turbulent Ñows such that this mecha-
nism is more obvious in the latter than the former. The
answer to this is explored in detail in Julien, &Brummell,

FIG. 14.ÈSketch of the elements that contribute to the rotational align-
ment of turbulent convective motions with the rotation vector X. A
buoyancy-driven vertical motion can be considered as the superposition of
a component parallel to the rotation vector and another perpen-w

A
w

Mdicular to it. The former experiences no Coriolis forces, whereas the latter
is forced to move in inertial circles, the composite of which is a spiraling
Ñow parallel to the rotation vector.

Brummell et al. 1996

g
ra
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y

※The convective motion is aligned with the rotation axis due to the Coriolis force 
  (∝ u × Ω ) when Ω is not parallel to g.

■Analogy with the cyclotron motion of charged 
  particles moving in the magnetic field due to  
  the Lorentz force ∝ v × B
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The motion parallel to Ω experiences no Coriolis acceleration, whereas that perpendicular  
to Ω feels a force which will tend to move a fluid parcel in an inertial circle in the plane  
perpendicular to the rotation vector.

B



■ The size of convective cell is determined by both the scale-height  
   and the Coriolis force (see Cowling 1951): 

19
84
Ap
J.
..
27
6.
.3
16
H

■ Simple version of dispersion relation for the convection (c.f., Hathaway 1984)

■ When we neglect Ωr, this can be reduced to 

λθ / λφ ∝ [1- (Ωθ /N)2sin2θ] -1/2

λθ : latitudinal wavelength of convective instability.

N : Brunt-Vaisala frequency
Ωθ : Latitudinal component of rotational frequency

- The ratio of λθ and λφ increases with θ
(this is the reason why the convective cell is  
elongated in the latitudinal direction )

λφ : longitudinal wavelength of convective instability.

(no diffusivities)

θ  : colatitude

λθ  / λφ ↑
λθ

λφ

→ The elongation of the cell is controlled by Ωθ

Effects of the Rotation ③ Elongation
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Fig. 5.— Radial profile of the mean radial velocity ⟨⟨v2
r⟩s⟩1/2.

The time average spans in the range of 300τc ≤ t ≤ 400τc. The
vertical axis is normalized by vrms = 0.03. The red-solid and blue-
dashed curves correspond to the models A and B, respectively. The
vertical dashed line denotes the base of the convection zone.

Figure 3 shows the temporal evolution of the volume-
averaged kinetic and magnetic energies defined by

ϵkin =
∫

1
2
ρv2dV

/ ∫
dV , ϵmag ≡

∫
B2

2µ0

/ ∫
dV ,

(10)
for Models A and B. The red and orange curves corre-
spond to those for Model A. The blue and green curves
are for Model B. After the convective motion sets in, it
reaches a nonlinear saturation state at around t = 50τc.
The saturation levels of the convection kinetic energy for
Models A and B are almost the same. The mean veloc-
ity is vrms = 0.03 which yields Beq = 0.02, Co = 8.0
and τc = 10.0 for both models. We have run the simula-
tions till 500τc and then compare physical properties of
convections, mean flows and magnetic dynamos between
two models.

To examine the convective and magnetic structures in
detail, we define the following four averages of a function
h(θ,φ) on a sphere.

The latitudinal average:

⟨h⟩θ ≡ 1
2

∫ 1

−1
h(θ, φ) d cos θ , (11)

The longitudinal average:

⟨h⟩φ ≡ 1
2π

∫ π

−π
h(θ,φ) dφ , (12)

The spherical average:

⟨h⟩s ≡ 1
4π

∫ 1

−1

∫ π

−π
h(θ, φ) d cos θdφ , (13)

The northern hemispheric average:

⟨h⟩+ ≡ 1
2π

∫ 1

0

∫ π

−π
h(θ, φ) d cos θdφ . (14)

Note that the time-average of each spatial mean is de-
noted by additional angular brackets, such as ⟨⟨h⟩θ⟩.

3.1. Properties of Convective Motion
Figure 4 shows, in the Mollweide projection, the dis-

tribution of the radial velocity when t = 330τc on spher-
ical surfaces at different depths for two models. Pan-
els (a)–(c) correspond to the depths r = 0.95R, 0.85R
and 0.72R for Model A, and panels (d)–(f) are those
for Model B. The orange and blue tones depict upflow
and downflow velocities. At the upper (r = 0.95R) and
mid (r = 0.85R) convection zones, the convective motion
is characterized by upflow dominant cells surrounded by
networks of narrow downflow lanes for both models. The
higher the latitude, the smaller the convective cell pre-
vails. Elongated columnar convective cells aligned with
the rotation axis appear near the equator. These are
the typical features observed in rotating stratified com-
pressible convection (e.g., Spruit et al. 1990; Miesch et
al. 2000; Brummell et al. 2002; Brun et al. 2004). In
panel (c), we find that the downflow lanes persist the
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Fig. 4.— Distribution of radial velocity on spherical surfaces at sampled radii vr(θ, φ) when t = 330τc (in the Mollweide projection).
Panels (a)–(c) correspond to the radii r = 0.95R, 0.85R and 0.72R for Model A, and panels (d)–(f) are those for Model B. The orange and
blue tones depict upflow and downflow velocities normalized by vrms = 0.03.
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Fig. 5.— Radial profile of the mean radial velocity ⟨⟨v2
r⟩s⟩1/2.

The time average spans in the range of 300τc ≤ t ≤ 400τc. The
vertical axis is normalized by vrms = 0.03. The red-solid and blue-
dashed curves correspond to the models A and B, respectively. The
vertical dashed line denotes the base of the convection zone.

Figure 3 shows the temporal evolution of the volume-
averaged kinetic and magnetic energies defined by

ϵkin =
∫

1
2
ρv2dV

/ ∫
dV , ϵmag ≡

∫
B2

2µ0

/ ∫
dV ,

(10)
for Models A and B. The red and orange curves corre-
spond to those for Model A. The blue and green curves
are for Model B. After the convective motion sets in, it
reaches a nonlinear saturation state at around t = 50τc.
The saturation levels of the convection kinetic energy for
Models A and B are almost the same. The mean veloc-
ity is vrms = 0.03 which yields Beq = 0.02, Co = 8.0
and τc = 10.0 for both models. We have run the simula-
tions till 500τc and then compare physical properties of
convections, mean flows and magnetic dynamos between
two models.

To examine the convective and magnetic structures in
detail, we define the following four averages of a function
h(θ,φ) on a sphere.

The latitudinal average:

⟨h⟩θ ≡ 1
2

∫ 1

−1
h(θ, φ) d cos θ , (11)

The longitudinal average:

⟨h⟩φ ≡ 1
2π

∫ π

−π
h(θ,φ) dφ , (12)

The spherical average:

⟨h⟩s ≡ 1
4π

∫ 1

−1

∫ π

−π
h(θ, φ) d cos θdφ , (13)

The northern hemispheric average:

⟨h⟩+ ≡ 1
2π

∫ 1

0

∫ π

−π
h(θ, φ) d cos θdφ . (14)

Note that the time-average of each spatial mean is de-
noted by additional angular brackets, such as ⟨⟨h⟩θ⟩.

3.1. Properties of Convective Motion
Figure 4 shows, in the Mollweide projection, the dis-

tribution of the radial velocity when t = 330τc on spher-
ical surfaces at different depths for two models. Pan-
els (a)–(c) correspond to the depths r = 0.95R, 0.85R
and 0.72R for Model A, and panels (d)–(f) are those
for Model B. The orange and blue tones depict upflow
and downflow velocities. At the upper (r = 0.95R) and
mid (r = 0.85R) convection zones, the convective motion
is characterized by upflow dominant cells surrounded by
networks of narrow downflow lanes for both models. The
higher the latitude, the smaller the convective cell pre-
vails. Elongated columnar convective cells aligned with
the rotation axis appear near the equator. These are
the typical features observed in rotating stratified com-
pressible convection (e.g., Spruit et al. 1990; Miesch et
al. 2000; Brummell et al. 2002; Brun et al. 2004). In
panel (c), we find that the downflow lanes persist the

Brief Summary 2-1 - Anisotropy in the Solar Convection -

Masada et al. (2013)

There are two sources of anisotropy in the solar convection:

(a) Density Stratification → Up-down asymmetry in the convection.

(b) Rotation (Coriolis force): 

- helical convective motion (CCW downflow >> CW upflow).

- convective motion is aligned with the rotation axis. 

- convection cell is elongated in the direction of the rotation axis. 



~ MHD effects are ignored here ~ 
~ Differential rotation in the CZ is highlighted here ~ 
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Angular Momentum Transport in the Sun

To answer this question, we should understand the 
“angular momentum transport process” in the Sun.

λ

Ω

L = ρλ2Ω
solar interior

High A.M

Low A.M

Why does the equator rotate faster than the pole ?Q:

equatorward 
transport

There should be equatorward A.M. transport process !



Turbulent Transport by Reynolds Stress

Reynolds stress: 
the stress that arises when the fluctuated momentum (ρui′) is transported by 
fluctuation velocities uj′or uk′ . The momentum flux is then (ρui′uj′) or (ρui′uk′).  
The mean flow is changed by these fluctuated momentum being transported.  

u = 〈u〉 + u′Reynolds decomposition:  
with u′= (ui′,uj′,uk′)

〈ui〉 ui′

i

v
el

o
ci

ty
fluctuation

mean flow

ui′

j

transport

FRS ∝ ρur′uφ′, ρuθ′uφ′, ρur′uθ′
In the case of the Sun,

The first and second components are related to the differential  
rotation in the Sun because these describe the transport of the  
zonal momentum (ρuφ′).

Transporter = turbulent Reynolds stress:



An Origin of Velocity Correlation = Coriolis force 

y

x

Ω

ux

FCoriolis ∝ u × Ω  

-ux

-uy

uy

※Coriolis force yields a correlation in two velocity components

■ Assume four fluctuated velocity components ±ux and ±uy.

■ The rotation axis is perpendicular to this slide in the rotating frame.

■ Then how does the Coriolis force act on these velocity components ?



y

x

Ω

ux

FCoriolis ∝ u × Ω  

-ux

-uy

uy

ux →  uxuyi > 0, -ux → uxuyi > 0
uy →  uxiuy < 0, -uy → uxiuy < 0

if the amplitudes of |ux|and  |uy| are comparable, the spatial 
average of the velocity correlation 〈uxuy〉 becomes zero.

※There should be anisotropy in the fluid motion for 
generating the mean momentum flux.

※Coriolis force yields a correlation in two velocity components

uyi

-uyi

uxi

-uxi

An Origin of Velocity Correlation = Coriolis force 

superscript “i” denotes 
the induced component 
by the Coriolis force.



Radial Transport of Zonal Angular Momentum

Is the fluctuated zonal momentum ρuφ′  
transported radially inward or outward ?

※Coriolis force introduces the correlation between ur′ and uφ′.

φ

r

Ωθ

uφ′

FCoriolis ∝ u × Ω  

uφ′

ur′

-ur′

ur′

-ur′ -uφ′

uφ′

In the solar convection, the radial convective velocity is much larger than the 
azimuthal convective velocity, that is ur′ > uφ′. The mean correlation 〈ur′uφ′〉 thus 
becomes negative, that is 〈ur′uφ′〉 < 0.

   ur′ → ur′uφ′ < 0  
-ur′ → ur′uφ′ < 0

   uφ′ → ur′uφ′ > 0  
-uφ′ → ur′uφ′ > 0

the angular momentum (∝ ρuφ′) is transported 
to radially inward direction.

Q:

A:
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Fig. 4.— Distribution of radial velocity on spherical surfaces at sampled radii vr(θ, φ) when t = 330τc (in the Mollweide projection).
Panels (a)–(c) correspond to the radii r = 0.95R, 0.85R and 0.72R for Model A, and panels (d)–(f) are those for Model B. The orange and
blue tones depict upflow and downflow velocities normalized by vrms = 0.03.
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Fig. 5.— Radial profile of the mean radial velocity ⟨⟨v2
r⟩s⟩1/2.

The time average spans in the range of 300τc ≤ t ≤ 400τc. The
vertical axis is normalized by vrms = 0.03. The red-solid and blue-
dashed curves correspond to the models A and B, respectively. The
vertical dashed line denotes the base of the convection zone.

Figure 3 shows the temporal evolution of the volume-
averaged kinetic and magnetic energies defined by

ϵkin =
∫

1
2
ρv2dV

/ ∫
dV , ϵmag ≡

∫
B2

2µ0

/ ∫
dV ,

(10)
for Models A and B. The red and orange curves corre-
spond to those for Model A. The blue and green curves
are for Model B. After the convective motion sets in, it
reaches a nonlinear saturation state at around t = 50τc.
The saturation levels of the convection kinetic energy for
Models A and B are almost the same. The mean veloc-
ity is vrms = 0.03 which yields Beq = 0.02, Co = 8.0
and τc = 10.0 for both models. We have run the simula-
tions till 500τc and then compare physical properties of
convections, mean flows and magnetic dynamos between
two models.

To examine the convective and magnetic structures in
detail, we define the following four averages of a function
h(θ,φ) on a sphere.

The latitudinal average:

⟨h⟩θ ≡ 1
2

∫ 1

−1
h(θ, φ) d cos θ , (11)

The longitudinal average:

⟨h⟩φ ≡ 1
2π

∫ π

−π
h(θ,φ) dφ , (12)

The spherical average:

⟨h⟩s ≡ 1
4π

∫ 1

−1

∫ π

−π
h(θ, φ) d cos θdφ , (13)

The northern hemispheric average:

⟨h⟩+ ≡ 1
2π

∫ 1

0

∫ π

−π
h(θ, φ) d cos θdφ . (14)

Note that the time-average of each spatial mean is de-
noted by additional angular brackets, such as ⟨⟨h⟩θ⟩.

3.1. Properties of Convective Motion
Figure 4 shows, in the Mollweide projection, the dis-

tribution of the radial velocity when t = 330τc on spher-
ical surfaces at different depths for two models. Pan-
els (a)–(c) correspond to the depths r = 0.95R, 0.85R
and 0.72R for Model A, and panels (d)–(f) are those
for Model B. The orange and blue tones depict upflow
and downflow velocities. At the upper (r = 0.95R) and
mid (r = 0.85R) convection zones, the convective motion
is characterized by upflow dominant cells surrounded by
networks of narrow downflow lanes for both models. The
higher the latitude, the smaller the convective cell pre-
vails. Elongated columnar convective cells aligned with
the rotation axis appear near the equator. These are
the typical features observed in rotating stratified com-
pressible convection (e.g., Spruit et al. 1990; Miesch et
al. 2000; Brummell et al. 2002; Brun et al. 2004). In
panel (c), we find that the downflow lanes persist the

Latitudinal Transport of Zonal Angular Momentum

Is the fluctuated zonal momentum ρuφ′  
transported poleward or equatorward ?Q:

θ

φΩr

uφ′
-uφ′

-uθ′

uθ′

uθ′

-uθ′

uφ′

-uφ′

The convective cells are elongated in the θ-
direction and aligned with the rotation axis.

uφ′ > uθ′
   uφ′ → uφ′uθ′ > 0  
-uφ′ → uφ′uθ′ > 0

   uθ′ → uφ′uθ′ < 0  
-uθ′ → uφ′uθ′ < 0

the angular momentum (∝ ρuφ′) is transported 
to the equatorial direction.A:

The mean correlation 〈uθ′uφ′〉 thus becomes positive (〈uθ′uφ′〉 > 0).

(The asymmetry is induced by the rotation)
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Fig. 4.— Distribution of radial velocity on spherical surfaces at sampled radii vr(θ, φ) when t = 330τc (in the Mollweide projection).
Panels (a)–(c) correspond to the radii r = 0.95R, 0.85R and 0.72R for Model A, and panels (d)–(f) are those for Model B. The orange and
blue tones depict upflow and downflow velocities normalized by vrms = 0.03.
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The time average spans in the range of 300τc ≤ t ≤ 400τc. The
vertical axis is normalized by vrms = 0.03. The red-solid and blue-
dashed curves correspond to the models A and B, respectively. The
vertical dashed line denotes the base of the convection zone.

Figure 3 shows the temporal evolution of the volume-
averaged kinetic and magnetic energies defined by

ϵkin =
∫

1
2
ρv2dV

/ ∫
dV , ϵmag ≡

∫
B2

2µ0

/ ∫
dV ,

(10)
for Models A and B. The red and orange curves corre-
spond to those for Model A. The blue and green curves
are for Model B. After the convective motion sets in, it
reaches a nonlinear saturation state at around t = 50τc.
The saturation levels of the convection kinetic energy for
Models A and B are almost the same. The mean veloc-
ity is vrms = 0.03 which yields Beq = 0.02, Co = 8.0
and τc = 10.0 for both models. We have run the simula-
tions till 500τc and then compare physical properties of
convections, mean flows and magnetic dynamos between
two models.

To examine the convective and magnetic structures in
detail, we define the following four averages of a function
h(θ,φ) on a sphere.

The latitudinal average:

⟨h⟩θ ≡ 1
2

∫ 1

−1
h(θ, φ) d cos θ , (11)

The longitudinal average:

⟨h⟩φ ≡ 1
2π

∫ π

−π
h(θ,φ) dφ , (12)

The spherical average:

⟨h⟩s ≡ 1
4π

∫ 1

−1

∫ π

−π
h(θ, φ) d cos θdφ , (13)

The northern hemispheric average:

⟨h⟩+ ≡ 1
2π

∫ 1

0

∫ π

−π
h(θ, φ) d cos θdφ . (14)

Note that the time-average of each spatial mean is de-
noted by additional angular brackets, such as ⟨⟨h⟩θ⟩.

3.1. Properties of Convective Motion
Figure 4 shows, in the Mollweide projection, the dis-

tribution of the radial velocity when t = 330τc on spher-
ical surfaces at different depths for two models. Pan-
els (a)–(c) correspond to the depths r = 0.95R, 0.85R
and 0.72R for Model A, and panels (d)–(f) are those
for Model B. The orange and blue tones depict upflow
and downflow velocities. At the upper (r = 0.95R) and
mid (r = 0.85R) convection zones, the convective motion
is characterized by upflow dominant cells surrounded by
networks of narrow downflow lanes for both models. The
higher the latitude, the smaller the convective cell pre-
vails. Elongated columnar convective cells aligned with
the rotation axis appear near the equator. These are
the typical features observed in rotating stratified com-
pressible convection (e.g., Spruit et al. 1990; Miesch et
al. 2000; Brummell et al. 2002; Brun et al. 2004). In
panel (c), we find that the downflow lanes persist the

Turbulent Angular Momentum Transport in the Sun

Ω

Frφ
FθφA

M

Frφ

AM

(a) Slow rotation case (b) Fast rotation case 

(uθ′ ~ uφ′ → Fθφ = 0)
Ω

(uθ′ < uφ′)

meridional plane meridional plane

Ω ~ ΩsunΩ = Ωsun/2



The mean-field EOM in a rotating frame with Ω0: 

when considering a steady sate with ∂u/∂t = 0

curl

※ FRS ∝ Reynolds stress

Meridional component (r,θ) Zonal component (φ)

– 2 –

∂u

∂t
+ (u ·∇)u = −1

ρ
∇P + g +

1
ρ
∇ · (FRS) (5)

r sin θ
∂Ω2

∂z
=

g

γCv

1
r

∂S

∂θ
(6)

ρvm ·∇m(λ2Ω) = −∇ · (FRS) (7)

One of long-standing issues in the solar physics is the origin of the Sun’s magnetic field, that is the solar
dynamo process. The final goal of solar dynamo researches is to reveal formation and cyclic variation
mechanisms of large-scale magnetic fields, which are responsible for sunspot and active region with 22 year
variation cycle, self-consistently with observations and magneto-hydrodynamics. Although there exists a lot
of numerical works, studying magnetic dynamos sustained by turbulent convections in global spherical shell
geometry (e.g., ??? ) and local Cartesian geometry (e.g., ????), the formation mechanism of large-scale
magnetic fields in the Sun still remains an open issue under the existing conditions (??).

Recently, a growing body of evidence is accumulating to demonstrate that large-scale magnetic fields,
which is accountable for the sunspot field, can be organized from turbulent convection in spherical shell
simulations. ? found, for the first time, an emergence of strong axisymmetric toroidal magnetic fields within
the convectively stable layer in anelastic spherical shell dynamo simulations (see also ??) The polarity
reversal of large-scale magnetic components is reported in the similar framework of spherical shell dynamos
by ? (see also ?).

Not only in the global shelluler geometries, the large-scale magnetic fields and its cyclic variations were
observed also in local Cartesian simulations of rotating turbulent convection by ?? (see ? for the case with
an imposed shear flow). Their parameter study suggested that large-scale magnetic field is generated by a
turbulent α-effect only when the rotation is rapid enough. It would be interesting that mean-field model with
dynamo coefficients obtained by test-field method gives a reasonable prediction on the dynamo excitation
in direct simulations. Turbulent transport coefficients that describes the evolution of large-scale magnetic
fields was studied in detail by ?.

Despite numerical manifestations of large-scale magnetic fields in both global spherical shell and local
Cartesian simulations, there is ongoing debate as to its reversal mechanism (e.g., ??). The aim of our work is
to gain an insight into the cycle variation mechanism of large-scale magnetic fields. In this letter, we report
numerical results obtained in our local Cartesian simulation of rotating penetrative convection. The storage,
amplification, and cyclic variation mechanisms of large-scale magnetic fields are studied with an emphasis on
physical properties and possible roles of horizontally-banded vortex sheets, which are maintained in bottom
convection zone and might be a key structure for magnetic activity cycle observed in our numerical model.

2. Numerical Settings

Our numerical model is almost same as that adopted in ? (see also, ?). A rectangular portion of
stratified spherical shell is modeled by a local Cartesian box situated at latitude θ, where x represents
latitude, y longitude (azimuth), and z points in the direction of gravity g. The computational domain has
three layers: top cooling layer of depth 0.15d in the range z0 < z < z1, middle convection layer of depth

(Thermal Wind Balance eq.)

Gyroscopic Pumping (Zonal Balance eq.)
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∂u

∂t
+ (u ·∇)u = −1

ρ
∇P + g +

1
ρ
∇ · (FRS) (5)

r sin θ
∂Ω2

∂z
=

g

γCv

1
r

∂S

∂θ
(6)

ρum ·∇m(λ2Ω) = −∇ · (FRS) (7)

∇ · (FMC + FRS) = 0 (8)

FMC ≡ ρ(r sin θ)2Ω (urer + uθeθ) (9)

um ≡ urer + uθeθ

FRS ≡ ρ(r sin θ)2(⟨u′
ru

′
φ⟩er + ⟨u′

θu
′
φ⟩eθ) (10)

One of long-standing issues in the solar physics is the origin of the Sun’s magnetic field, that is the solar
dynamo process. The final goal of solar dynamo researches is to reveal formation and cyclic variation
mechanisms of large-scale magnetic fields, which are responsible for sunspot and active region with 22 year
variation cycle, self-consistently with observations and magneto-hydrodynamics. Although there exists a
lot of numerical works, studying magnetic dynamos sustained by turbulent convections in global spherical
shell geometry (e.g., Gilman 1983; Glatzmaier 1985; Brun et al. 2004 ) and local Cartesian geometry (e.g.,
Nordlund et al. 1992; Brandenburg et al. 1996; Ziegler & Rüdiger 2003; Cattaneo et al. 2003), the formation
mechanism of large-scale magnetic fields in the Sun still remains an open issue under the existing conditions
(Ossendrijver 2003; Miesch & Toomre 2009).

Recently, a growing body of evidence is accumulating to demonstrate that large-scale magnetic fields,
which is accountable for the sunspot field, can be organized from turbulent convection in spherical shell
simulations. Browning et al. (2006) found, for the first time, an emergence of strong axisymmetric toroidal
magnetic fields within the convectively stable layer in anelastic spherical shell dynamo simulations (see also
Browning et al. 2007; Miesch et al. 2009) The polarity reversal of large-scale magnetic components is reported
in the similar framework of spherical shell dynamos by Ghizaru et al. (2010) (see also Racine et al. 2011).

Not only in the global shelluler geometries, the large-scale magnetic fields and its cyclic variations were
observed also in local Cartesian simulations of rotating turbulent convection by Käpylä et al. (2009a, 2011)
(see Käpylä et al. 2008 for the case with an imposed shear flow). Their parameter study suggested that
large-scale magnetic field is generated by a turbulent α-effect only when the rotation is rapid enough. It
would be interesting that mean-field model with dynamo coefficients obtained by test-field method gives a
reasonable prediction on the dynamo excitation in direct simulations. Turbulent transport coefficients that
describes the evolution of large-scale magnetic fields was studied in detail by Käpylä et al. (2009b).

Despite numerical manifestations of large-scale magnetic fields in both global spherical shell and local
Cartesian simulations, there is ongoing debate as to its reversal mechanism (e.g., Miesch et al. 2009; Ghizaru
et al. 2010). The aim of our work is to gain an insight into the cycle variation mechanism of large-scale
magnetic fields. In this letter, we report numerical results obtained in our local Cartesian simulation of
rotating penetrative convection. The storage, amplification, and cyclic variation mechanisms of large-scale
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magnetic fields are studied with an emphasis on physical properties and possible roles of horizontally-banded
vortex sheets, which are maintained in bottom convection zone and might be a key structure for magnetic
activity cycle observed in our numerical model.

– 2 –

∂u

∂t
+ (u ·∇)u = −1

ρ
∇P + g +

1
ρ
∇ · (FRS) (5)

r sin θ
∂Ω2

∂z
=

g

γCv

1
r

∂S

∂θ
(6)

ρum ·∇m(λ2Ω) = −∇ · (FRS) (7)

∇ · (FMC + FRS) = 0 (8)

FMC ≡ ρ(r sin θ)2Ωum = ρLum (9)

um ≡ urer + uθeθ

FRS ≡ ρ(r sin θ)(⟨u′
ru

′
φ⟩er + ⟨u′

θu
′
φ⟩eθ) (10)

One of long-standing issues in the solar physics is the origin of the Sun’s magnetic field, that is the solar
dynamo process. The final goal of solar dynamo researches is to reveal formation and cyclic variation
mechanisms of large-scale magnetic fields, which are responsible for sunspot and active region with 22 year
variation cycle, self-consistently with observations and magneto-hydrodynamics. Although there exists a
lot of numerical works, studying magnetic dynamos sustained by turbulent convections in global spherical
shell geometry (e.g., Gilman 1983; Glatzmaier 1985; Brun et al. 2004 ) and local Cartesian geometry (e.g.,
Nordlund et al. 1992; Brandenburg et al. 1996; Ziegler & Rüdiger 2003; Cattaneo et al. 2003), the formation
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where

Anelastic approximation  
⇄ ∇・(ρum)

The mean flow profile is determined 
to satisfy these two equations. 
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which is accountable for the sunspot field, can be organized from turbulent convection in spherical shell
simulations. Browning et al. (2006) found, for the first time, an emergence of strong axisymmetric toroidal
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in the similar framework of spherical shell dynamos by Ghizaru et al. (2010) (see also Racine et al. 2011).

Not only in the global shelluler geometries, the large-scale magnetic fields and its cyclic variations were
observed also in local Cartesian simulations of rotating turbulent convection by Käpylä et al. (2009a, 2011)
(see Käpylä et al. 2008 for the case with an imposed shear flow). Their parameter study suggested that
large-scale magnetic field is generated by a turbulent α-effect only when the rotation is rapid enough. It
would be interesting that mean-field model with dynamo coefficients obtained by test-field method gives a
reasonable prediction on the dynamo excitation in direct simulations. Turbulent transport coefficients that
describes the evolution of large-scale magnetic fields was studied in detail by Käpylä et al. (2009b).
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observed also in local Cartesian simulations of rotating turbulent convection by Käpylä et al. (2009a, 2011)
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large-scale magnetic field is generated by a turbulent α-effect only when the rotation is rapid enough. It
would be interesting that mean-field model with dynamo coefficients obtained by test-field method gives a
reasonable prediction on the dynamo excitation in direct simulations. Turbulent transport coefficients that
describes the evolution of large-scale magnetic fields was studied in detail by Käpylä et al. (2009b).

Despite numerical manifestations of large-scale magnetic fields in both global spherical shell and local
Cartesian simulations, there is ongoing debate as to its reversal mechanism (e.g., Miesch et al. 2009; Ghizaru
et al. 2010). The aim of our work is to gain an insight into the cycle variation mechanism of large-scale
magnetic fields. In this letter, we report numerical results obtained in our local Cartesian simulation of
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activity cycle observed in our numerical model.
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(see Käpylä et al. 2008 for the case with an imposed shear flow). Their parameter study suggested that
large-scale magnetic field is generated by a turbulent α-effect only when the rotation is rapid enough. It
would be interesting that mean-field model with dynamo coefficients obtained by test-field method gives a
reasonable prediction on the dynamo excitation in direct simulations. Turbulent transport coefficients that
describes the evolution of large-scale magnetic fields was studied in detail by Käpylä et al. (2009b).
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One of long-standing issues in the solar physics is the origin of the Sun’s magnetic field, that is the solar
dynamo process. The final goal of solar dynamo researches is to reveal formation and cyclic variation
mechanisms of large-scale magnetic fields, which are responsible for sunspot and active region with 22 year
variation cycle, self-consistently with observations and magneto-hydrodynamics. Although there exists a
lot of numerical works, studying magnetic dynamos sustained by turbulent convections in global spherical
shell geometry (e.g., Gilman 1983; Glatzmaier 1985; Brun et al. 2004 ) and local Cartesian geometry (e.g.,
Nordlund et al. 1992; Brandenburg et al. 1996; Ziegler & Rüdiger 2003; Cattaneo et al. 2003), the formation
mechanism of large-scale magnetic fields in the Sun still remains an open issue under the existing conditions
(Ossendrijver 2003; Miesch & Toomre 2009).

Recently, a growing body of evidence is accumulating to demonstrate that large-scale magnetic fields,
which is accountable for the sunspot field, can be organized from turbulent convection in spherical shell
simulations. Browning et al. (2006) found, for the first time, an emergence of strong axisymmetric toroidal
magnetic fields within the convectively stable layer in anelastic spherical shell dynamo simulations (see also
Browning et al. 2007; Miesch et al. 2009) The polarity reversal of large-scale magnetic components is reported
in the similar framework of spherical shell dynamos by Ghizaru et al. (2010) (see also Racine et al. 2011).

Not only in the global shelluler geometries, the large-scale magnetic fields and its cyclic variations were
observed also in local Cartesian simulations of rotating turbulent convection by Käpylä et al. (2009a, 2011)
(see Käpylä et al. 2008 for the case with an imposed shear flow). Their parameter study suggested that
large-scale magnetic field is generated by a turbulent α-effect only when the rotation is rapid enough. It
would be interesting that mean-field model with dynamo coefficients obtained by test-field method gives a
reasonable prediction on the dynamo excitation in direct simulations. Turbulent transport coefficients that
describes the evolution of large-scale magnetic fields was studied in detail by Käpylä et al. (2009b).

Despite numerical manifestations of large-scale magnetic fields in both global spherical shell and local
Cartesian simulations, there is ongoing debate as to its reversal mechanism (e.g., Miesch et al. 2009; Ghizaru
et al. 2010). The aim of our work is to gain an insight into the cycle variation mechanism of large-scale
magnetic fields. In this letter, we report numerical results obtained in our local Cartesian simulation of
rotating penetrative convection. The storage, amplification, and cyclic variation mechanisms of large-scale
magnetic fields are studied with an emphasis on physical properties and possible roles of horizontally-banded
vortex sheets, which are maintained in bottom convection zone and might be a key structure for magnetic
activity cycle observed in our numerical model.
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dynamo process. The final goal of solar dynamo researches is to reveal formation and cyclic variation
mechanisms of large-scale magnetic fields, which are responsible for sunspot and active region with 22 year
variation cycle, self-consistently with observations and magneto-hydrodynamics. Although there exists a
lot of numerical works, studying magnetic dynamos sustained by turbulent convections in global spherical
shell geometry (e.g., Gilman 1983; Glatzmaier 1985; Brun et al. 2004 ) and local Cartesian geometry (e.g.,
Nordlund et al. 1992; Brandenburg et al. 1996; Ziegler & Rüdiger 2003; Cattaneo et al. 2003), the formation
mechanism of large-scale magnetic fields in the Sun still remains an open issue under the existing conditions
(Ossendrijver 2003; Miesch & Toomre 2009).

Recently, a growing body of evidence is accumulating to demonstrate that large-scale magnetic fields,
which is accountable for the sunspot field, can be organized from turbulent convection in spherical shell
simulations. Browning et al. (2006) found, for the first time, an emergence of strong axisymmetric toroidal
magnetic fields within the convectively stable layer in anelastic spherical shell dynamo simulations (see also
Browning et al. 2007; Miesch et al. 2009) The polarity reversal of large-scale magnetic components is reported
in the similar framework of spherical shell dynamos by Ghizaru et al. (2010) (see also Racine et al. 2011).

Not only in the global shelluler geometries, the large-scale magnetic fields and its cyclic variations were
observed also in local Cartesian simulations of rotating turbulent convection by Käpylä et al. (2009a, 2011)
(see Käpylä et al. 2008 for the case with an imposed shear flow). Their parameter study suggested that
large-scale magnetic field is generated by a turbulent α-effect only when the rotation is rapid enough. It
would be interesting that mean-field model with dynamo coefficients obtained by test-field method gives a
reasonable prediction on the dynamo excitation in direct simulations. Turbulent transport coefficients that
describes the evolution of large-scale magnetic fields was studied in detail by Käpylä et al. (2009b).

∴ ∂L/∂z ~ 0, ∂L/∂θ > 0

- FRSが動径方向負の向き =  FRSは負の値
■ 回転が遅い場合：

Mean Field Transport of Angular Momentum (2)
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(see Käpylä et al. 2008 for the case with an imposed shear flow). Their parameter study suggested that
large-scale magnetic field is generated by a turbulent α-effect only when the rotation is rapid enough. It
would be interesting that mean-field model with dynamo coefficients obtained by test-field method gives a
reasonable prediction on the dynamo excitation in direct simulations. Turbulent transport coefficients that
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Despite numerical manifestations of large-scale magnetic fields in both global spherical shell and local
Cartesian simulations, there is ongoing debate as to its reversal mechanism (e.g., Miesch et al. 2009; Ghizaru
et al. 2010). The aim of our work is to gain an insight into the cycle variation mechanism of large-scale
magnetic fields. In this letter, we report numerical results obtained in our local Cartesian simulation of
rotating penetrative convection. The storage, amplification, and cyclic variation mechanisms of large-scale
magnetic fields are studied with an emphasis on physical properties and possible roles of horizontally-banded
vortex sheets, which are maintained in bottom convection zone and might be a key structure for magnetic
activity cycle observed in our numerical model.

– 2 –

∂u

∂t
+ (u ·∇)u = −1

ρ
∇P + g +

1
ρ
∇ · (FRS) (5)

r sin θ
∂Ω2

∂z
=

g

γCv

1
r

∂S

∂θ
(6)

ρum ·∇m(λ2Ω) = −∇ · (FRS) (7)

∇ · (FMC + FRS) = 0 (8)

FMC ≡ ρ(r sin θ)2Ω (urer + uθeθ) (9)

um ≡ urer + uθeθ

FRS ≡ ρ(r sin θ)2(⟨u′
ru

′
φ⟩er + ⟨u′

θu
′
φ⟩eθ) (10)

One of long-standing issues in the solar physics is the origin of the Sun’s magnetic field, that is the solar
dynamo process. The final goal of solar dynamo researches is to reveal formation and cyclic variation
mechanisms of large-scale magnetic fields, which are responsible for sunspot and active region with 22 year
variation cycle, self-consistently with observations and magneto-hydrodynamics. Although there exists a
lot of numerical works, studying magnetic dynamos sustained by turbulent convections in global spherical
shell geometry (e.g., Gilman 1983; Glatzmaier 1985; Brun et al. 2004 ) and local Cartesian geometry (e.g.,
Nordlund et al. 1992; Brandenburg et al. 1996; Ziegler & Rüdiger 2003; Cattaneo et al. 2003), the formation
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Mean Field Transport of Angular Momentum (4)

※重要なこと：Gyroscopic Pumpingが回転分布を決めているわけではない
→ ある回転分布における角運動量輸送のバランスを記述している

(a) 回転が遅い場合
– 子午面流は角運動量を極向きに輸送
– レイノルズ応力は角運動量を動径方向内向きに輸送

(b) 回転が速い場合
– 子午面流は角運動量を極向きに輸送
– レイノルズ応力は角運動量を赤道向きに輸送

→ この二つの輸送プロセスの帰結としてある回転分布が決まる.

→ この二つの輸送プロセスの帰結としてある回転分布が決まる.



Demonstration with Simulation Models

Effects of Penetrative Convection on Solar Dynamo 5

Fig. 6.— Mean angular velocity ⟨⟨Ω⟩φ⟩ [panels (a) and (b) for Models A and B], and mean meridional flow [panels (c) and (d) for Models A

and B], where ⟨⟨Ω⟩φ⟩ = ⟨⟨vφ⟩φ⟩/(r sin θ) + Ω0. The mean meridional flow velocity is defined by ⟨⟨vm⟩φ⟩ = [⟨⟨vr⟩φ⟩2 + ⟨⟨vθ⟩φ⟩2]1/2. The
white solid curves in panels (a) and (c) denote the interface between the convective and stable layers.

plume-like coherent structure even just above the bot-
tom of the unstable layer (r = 0.72R). The downflow
plumes then penetrate into the underlying stable layer.

The radial profile of the mean radial velocity ⟨⟨v2
r⟩s⟩1/2

is shown in Figure 5. The red-solid and blue-dashed
curves correspond to Models A and B, respectively. The
time average spans in the range of 300τc ≤ t ≤ 400τc.
The mean radial velocity has a peak at the mid convec-
tion zone (r ∼ 0.8R) for both models. The convective
motion is the most active there. While the radial flow is
restrained by the boundary placed on the bottom of the
convection zone in Model B, it can penetrate into the
underlying stable layer in Model A. As a result of the
penetrative convection, mean zonal and meridional flows
are driven by the Reynolds and Maxwell stresses in the
stable layer. That will be described in the followings.

3.2. Structures of Mean Flow
In Figures 6(a) and (b), time-averaged mean angular

velocity, defined by ⟨⟨Ω⟩φ⟩ = ⟨⟨vφ⟩φ⟩/(r sin θ) + Ω0, is
shown for the models A and B, respectively. The time
average spans in the range of 300τc ≤ t ≤ 400τc. The
normalization unit is the initial angular velocity Ω0.

The differential rotations in both models have basi-
cally solar-like profiles with the equatorial acceleration.
However, both exhibit more cylindrical alignment than

the solar rotation profile characterized by the conical iso-
rotation surface. The system is dominated by the Taylor-
Proudman balance in both models (e.g., Pedlosky 1987).
The angular velocity contrast ∆Ω between equator and
pole is about 18% in Model A and 16% in Model B. These
are slightly smaller than that obtained by the helioseis-
mology (∼ 20%). More remarkably, a radial gradient of
the angular velocity is developed in the stably stratified
layer around latitudes ±40◦. This structure is reminis-
cent of the solar tachocline despite the radial shear layer
is broad compared to the observed one (Spiegel & Zahn
1992; Charbonneau et al. 1999; Miesch 2005; Hughes et
al. 2007). The rotation profile of Model A is reasonably
similar with that of the Sun deduced from helioseismol-
ogy (Thompson et al. 2003).

The spontaneous formation of the tachocline-like shear
layer below the convective envelope was reported in the
hydrodynamic simulation of the solar penetrative convec-
tion performed by Brun et al. (2011). Our results suggest
that the tachocline-like shear layer is a natural outcome
of the presence of the stable layer even in the MHD con-
vection system. We discuss more about the differential
rotation profile established in Model A in § 4.1.

Shown in Figures 6(c) and (d) are time-averaged mean
meridional flows for the models A and B. The color
contour depicts the meridional flow velocity, defined by
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restrained by the boundary placed on the bottom of the
convection zone in Model B, it can penetrate into the
underlying stable layer in Model A. As a result of the
penetrative convection, mean zonal and meridional flows
are driven by the Reynolds and Maxwell stresses in the
stable layer. That will be described in the followings.

3.2. Structures of Mean Flow
In Figures 6(a) and (b), time-averaged mean angular

velocity, defined by ⟨⟨Ω⟩φ⟩ = ⟨⟨vφ⟩φ⟩/(r sin θ) + Ω0, is
shown for the models A and B, respectively. The time
average spans in the range of 300τc ≤ t ≤ 400τc. The
normalization unit is the initial angular velocity Ω0.

The differential rotations in both models have basi-
cally solar-like profiles with the equatorial acceleration.
However, both exhibit more cylindrical alignment than

the solar rotation profile characterized by the conical iso-
rotation surface. The system is dominated by the Taylor-
Proudman balance in both models (e.g., Pedlosky 1987).
The angular velocity contrast ∆Ω between equator and
pole is about 18% in Model A and 16% in Model B. These
are slightly smaller than that obtained by the helioseis-
mology (∼ 20%). More remarkably, a radial gradient of
the angular velocity is developed in the stably stratified
layer around latitudes ±40◦. This structure is reminis-
cent of the solar tachocline despite the radial shear layer
is broad compared to the observed one (Spiegel & Zahn
1992; Charbonneau et al. 1999; Miesch 2005; Hughes et
al. 2007). The rotation profile of Model A is reasonably
similar with that of the Sun deduced from helioseismol-
ogy (Thompson et al. 2003).

The spontaneous formation of the tachocline-like shear
layer below the convective envelope was reported in the
hydrodynamic simulation of the solar penetrative convec-
tion performed by Brun et al. (2011). Our results suggest
that the tachocline-like shear layer is a natural outcome
of the presence of the stable layer even in the MHD con-
vection system. We discuss more about the differential
rotation profile established in Model A in § 4.1.

Shown in Figures 6(c) and (d) are time-averaged mean
meridional flows for the models A and B. The color
contour depicts the meridional flow velocity, defined by

(a) Slow rotation case (b) Fast rotation case 

0.2 0.4 0.6 0.80.0 1.00.2 0.4 0.6 0.80.0 1.0

Ω = ΩsunΩ = Ωsun/2

3D rotating spherical 
shell convection

Masada et al. (2013)
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太陽内部のプラズマの流れ： 
診断・モデル化・推定

①診断 ： 太陽内部のプラズマの流れの観測

②モデル化 ： 太陽内部MHDモデリング

③推定 ： 太陽熱対流の難問：計算・データサイエンス手法 

　　　　　　 を使った対流駆動機構の検討と推定

- 太陽の内部構造モデルと日震学 

- 標準太陽モデルと熱対流の物理 

- 太陽磁場の観測と太陽MHDを考える上で知っておくべきこと

- 太陽ダイナモモデル（ダイナモの基礎・標準シナリオ） 

- グローバルモデルと過去20年の研究の進展 

- セミグローバルモデルとダイナモのロスビー数依存性 

- Convection conundrum と 非局所駆動型熱対流 

- Topological Data Analysis (TDA)の基礎 

- 太陽熱対流のトポロジカルな特徴（モデル vs. 観測）



Convection conundrum
（解決困難な熱対流の難問）



太陽対流層の対流渦は階層構造を持つ：

increasing H
ρ

bottom CZ

top CZgranule

super-granule

giant cell

The Swedish 1-meter Solar Telescope / Institute for Solar Physics, Observer & Data reduction: 
Luc Rouppe van der Voort, Oslo 18 Jun 2006 (Wavelength: 656.3nm H-Alpha)

20
M

m

20Mm

太陽のマルチスケール熱対流描像（パラダイム）
太陽対流層の（伝統的な）描像

近年, このパラダイムに疑問符が

●

粒状斑            : typical size  1Mm,        typical lifetime  10 min. ≈ ≈
超粒状班　　 : typical size  30Mm,      typical lifetime  20 hours≈ ≈
巨大胞        　 : typical size  200Mm,    typical lifetime  1 month≈ ≈

●
●
●

- 対流の駆動スケール ∝ 圧力スケール長（HP）

- 太陽対流層の圧力変化は4桁 → HPも4桁変化

（背景にあるのは混合距離理論と勾配拡散近似）



太陽熱対流の難問 : 巨大胞はどこへ行った！？

ASH
r = 0.98R�

stagger
r = 0.98R�

Revised HDS2012
r = 0.96R�

Ring pipeline
r = 0.984R�

Granulation tracking
surface

Revised GHFT2015
r = 0.96R�

Figure 3.3: Summary of the estimates of E�. As in Fig. 3.2 the black curves show
the revised estimates from HDS2012 and GHFT2015. The figure also shows the new
granulation-tracking measurements (magenta) and new measurements from the ring-
diagram pipeline (blue). The curves corresponding to the ASH and stagger simulations as
described in GB2012 are shown in grey.

3.5 Conclusions and discussion

Figure 3.3 summarizes our current understanding of the spectrum of surface and subsur-
face east-west velocities from observations and simulations. We removed the curve for
R2012 for the sake of simplicity; this curve is compatible (within a factor of two) with
the new surface measurements.

The two ring-diagram estimates of E� shown in Fig. 3.3 are not compatible within
the error estimates (see Fig. 5 from GHFT2015; the error estimate on the rms v� at ` =
10 is less than 10%). Preliminary work (Nagashima et al. 2020) shows that the ring-fit
parameter estimates from local power spectra by the ring-pipeline model rdfitf (Haber
et al. 2000) and the multi-ridge fitting of GHFT2015 are not di↵erent enough to explain

72

Proxauf 2021

- 巨大胞が存在しない → 対流層の内側から輸送されてくる熱エネルギーが不足するはず 

- 観測的には表面に輸送されている熱エネルギーに不足は無い（大陽光度） 

●

Hanasoge et al. (2012): see also e.g., Greer+15; Proxauf 21: 
日震学診断による対流速度スペクトル（表面直下） 

→ 低波数レジームの対流速度の観測値が理論予測より2桁以上小さい

●

Hathaway et al. (2015): 
太陽対流層表面（光球面）での対流速度スペクトル： 

→ 長時間積分しても期待されるスケールに巨大胞の存在が確認できない

super-granule
granule

These spectral values are calculated by taking the square root
of the wavenumber times the velocity power per wavenumber:

V ℓ ℓ A . 14
m ℓ

ℓ

ℓ
m 2( ) ( )å=

=-

The Doppler velocity spectrum rises to a peak at ℓ 120~
(consistent with typical supergranules with diameters of
∼35Mm), drops slightly, and then rises again to a second
peak at ℓ 3500~ (consistent with granules with diameters
of ∼1.2 Mm).

Note that this spectrum is for the Doppler velocities. It
includes foreshortening at the limb, which limits the signal at
high wavenumbers, and it includes line-of-sight effects, which
exclude horizontal velocities at disk center and only include
one horizontal velocity component across the rest of the disk.
In spite of these caveats, it is nonetheless clear that the
spectrum is continuous with only two primary features—peaks
representative of granules and supergranules.

Figure 7. Simulated Doppler velocity image. The line-of-sight velocity signal ranges from −1000 m s−1 (dark blue) to +1000 m s−1 (dark red).

Figure 8. Doppler velocity spectra for the simulated data (black line) and the
HMI data (red line). The dotted red line shows the spectrum obtained from the
HMI data when the artifacts are not removed.

7
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巨大胞の存在が 
期待されるスケール

Hathaway et al. (2015)

減少

large gap

Most of numerical models are 

constructed on the conventional picture.

（※理論予測 ↔︎ 混合距離理論に基づく輸送）

・ どうやってエネルギーは運ばれているのか？　Convection Conundrum
・ 近年の太陽MHDモデルは現実の太陽とは全く異なる対流の中でダイナモを解いている？？



(b) 対流層上部 (c) 対流層中部(a) 対流層表面 x x x

y y y

uz uz uz

0.03

-0.03

0.03

-0.03

0.03

-0.03

YM&Sano16

対流層の計算モデルを構築する際, どうしているか？
太陽の内部構造モデル・・・ポリトロープ大気 ： P = ρ1+1/m

∇s = 1/(m+1),       ∇ad = 1 - 1/γ
∇ad - ∇s ＜ 0 (Schwarzschild criterion for unstable)
γ = 5/3を仮定すると, m < 3/2が不安定条件. m = 1.49 (YM&Sano16)とか適当に値を与えて 

浮力駆動の対流を対流層で起こす →  浮力駆動のMLT描像に近い対流が発達

6 Masada and Sano
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Fig. 5.— Figure1対流層の底ほどHpは大きいので, 速度は小さく, 空間スケールの大きな対流セル.  

これは対流を局所プロセスとして取り扱っている（与えている）帰結. 



Are we headed in the right direction?
How to resolve the convection conundrum ? several possible solutions are proposed:

① rotationally-constrained convection (e.g., Featherstone and Hindman 2016; Vasil et al. 2021)

② mostly adiabatic CZ  (e.g., Spruit 1997; Rast 1998; Brandenburg 2016; Cossette & Rast 2017)

③ large effective Prandtl number (e.g. O’Mara et al. 2016; Bekki et al. 2017; Karak et al. 2018) 

④ higher resolution + SSD (e.g., Hotta & Kusano 21)

conventional view : multi-scale convection
δ = ∇s  - ∇ad > 0 (for whole the CZ)

Fr + Fe =
L⊙

4πr2
radiative 

diffusion

convection

Fe ∝ ρ⟨δurδei⟩with : enthalpy flux

(energy transported by the convection)

The turbulent energy flux is naively modeled by : ●

gradient diffusion model

δurδei ∼ κE
∂ei

∂r
, κE = ⟨δu2

r ⟩ lwhere
: turbulent transport coef.

( : mixing length ~ size of the convective eddies)l
(GD model) 

The natural depiction derived from the GD 

model is the multi-scale convection in the sun. 

●

- two transporters: 
How is the energy transported inside the sun ?●

With choosing the scale-height  as the mixing-length l, 

the amplitude of the turbulent transport coef.  is determined.

Hρ
κE

Brief review of mixing-length concept:

Because of the high density contrast in the solar CZ (6 orders 
of magnitude difference in the density over whole CZ), the 
scale height varies largely there. So, we believe that the size 
of the convective eddies should vary largely in the solar CZ. 

CC suggests that the absence of the giant cell 

which should be the main energy transporter.

●



FWHM of the Gaussian cooling (~ 4Mm)

upper CZ

bottom CZ
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mild resolution:  
512 (x) × 256 (z)

Is there an alternative to giant cells ?
one possibility is cooling-driven convection : downflow plume

　polytropic atmosphere (adiabatic profile)

    - density contrast bw top and bottom is about 300.

    - 2D hydrodynamic eq. (high.reso calc ～25mesh/Mm）

◾

solar CZ is an open system
(energy loss from the photosphere)

radiative cooling

fluid elements which lose the 

entropy at the surface becomes 

heavier, resulting in the formation 

of the plume like strong downflow

Simple numerical experiment : 
 (The driver of convection is the surface radiative cooling)

　Gaussian cooling at the surface (e.g., Rast 1998)

    - FWHM of the gaussian cooling is 20% of box width.

    - minimum T is 20% smaller than the equilibrium T.

+

512(x) × 256(z)

Spruit 1997;

Rast 98, 03; 

Brandenburg 16

Cossette & Rast 17

 ... 

(YM in prep.)

This alternative model has been proposed theoretically 

already in late 90’s, but has not been studied carefully until recently.

stellar convection should be driven by cooling at the surface !

Quantitative agreement between surface convection 

simulations with radiation and observational results.

(Stein & Nordlund’95)



bottom CZ

surface
granule

super-granule

giant cell

(b) S-grad-driven model: super-adiabatic

    entropy gradient over the whole CZ

・In this model, the size of the convective eddies 

   determined by the local scale-height. 

        → broad spectrum from granule to giant cell

δ = ∇s  - ∇ad > 0 

entropy grad

(for whole the CZ)

(a) Cooling-driven model: super-adiabatic surface    

       due to the radiative cooling 

・radiative cooling makes the surface super-adiabatic：

bottom CZ

surface
granule

super-granule

downflow 
plume

(inertia-driven )

Cooling@surface : entropy loss

entropy grad

（c.f., Spruit 1997）

 →  interface btw super-adiabatic and adiabatic layers

        determines the largest size of the convective cell

Possible Two Convection Models : 

How does the convection model impact on the turbulent transport properties ?



Rayleigh-Bénard convection

Video by M. Zimmermann

temperatureTIME

・表面で急激に冷却された重いプルームが下降することで熱を輸送

・ Fconv = ρvCp DT , v < 0かつDT < 0の時も, Fconv > 0 (外向きに熱エネルギーを輸送)  

・強密度成層 → 対流層底部 (ρb) と表面 (ρt) の密度比が106. 	
　 → 底部からの上昇流が運ぶDTは, 表面からの下降流が運ぶDTの105 ~106分の1に過ぎない. 

・高レイリー数熱対流：buoyant fluidのthread (糸) or 細いplumeが熱を輸送
表面での急激な冷却が担う太陽熱対流 (実験結果)

表面 (boundary) 	
での冷却が対流を駆動	
= non-local process

Hard 乱流



検証：熱対流モデルの違いが 

熱輸送に及ぼす影響



How different they are in the transport properties ?

z

x

● two-types of convection models are simulated：
①cooling-driven : m = 1.495 (upper 5%) + 1.5 (95%)
②S-grad-driven  : m = 1.495 (whole CZ)

ρbottom/ρtop = 300,   Nx × Ny × Nz = 5122✕128
● Basic eqs：compressible HD eqs【Cartesian box】
● polytropic atmosphere【CZ only】with an index  
    (aspect ratio：Lx/Lz = Ly/Lz  = 4, no rotation)

m
● density contrast & resolution：

● technical term : Newton cooling (only model ①)

This mimics the rad cooling

and maintain super-adiabaticity 

in the upper CZ

Pr   = 1.0 

Ra  = 4.2×106

y

Super-adiabaticadiabatic
(marginally stable)

Super-adiabatic
ms = 1.495 ms = 1.495

mi = 1.5 mi = 1.495

g

①Cooling-driven ②S-gradient-driven

ρ
bottom /ρ

top  = 300

bottom CZ

top CZ

g

our model mimics the density profile of the  

actual SUN from the base CZ to ~ 0.98Rsun.

(0.2% difference in the input energy between models)

∂zei = const. 

@ bottom CZ

Yokoi,YM+23, YM+25 (simulation similar to Cossette & Rast 2016)



Convection Properties of Two models : Appearance

x x

x x

y y

z z

δS = S - 〈S〉

δS = S - 〈S〉

δS = S - 〈S〉

δS = S - 〈S〉

horizontal cutting plane 
@CZ surface

vertical cutting plane vertical cutting plane

・Small convective cells prevail at the surface. 

・A lot of downflow plumes appear in the upper CZ.

①Cooling-driven model (CD): ②S-grad-driven model (SD):（
entropy deviation from

 the average）

horizontal cutting plane 
@CZ surface

A lots of downflow plumes exist in the upper CZ

・Large convective cells are dominant at the surface. 

・Large-scale flow motions across the entire domain.



Mean Convection Properties : Similarity and Difference
・Mean kinetic energies are almost same 

    at saturated state between models. 
・Kinetic energy spectra for vz show a 

   remarkable difference in the low k regime: 

- the convective energy is suppressed 

   in low k in the cooling-driven model 
→ compatible with the NO giant cell obs.

●

●

The cooling-driven model seems to be suitable for the 
solar convection. How do the other physical properties

differ between the cooling-driven and S-grad-driven ?

cooling-driven

S-grad-driven
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Statistical Properties of Convection : broad downflow wing

・Gaussian-like distribution of vh  for both models 

    (a bit broader in the cooling-driven)
・Non-gaussian distribution of vz  for both models : 

- up-down asymmetry would be a natural outcome 

  of compressible convection & mass flux conservation. 
- downflow has broader wing in the cooling-driven model 

  than that in the S-gradient-driven model
→ stochastic downflow (non-equilibrium process) plays 

    an important role for the transport in the system

Regardless of the non-rotating model, kinetic helicity 

exists locally, while it becomes zero when taking 

sufficiently-long time average.  

・Leptokurtic distribution of H for both models: 
- broader wing in the cooling-driven model

How should we treat such ``non-gaussian properties"  
of convection, that may be important in considering  
the transport in the stars. 

●

●

●
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Figure 7. 2D histogram of probability density as a function of the vertical velocity (XDI) and the vertical turbulent energy flux (X48 XDI) for (a) Model C and
(b) Model S.
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Figure 8. Same as Fig.7(a) but with both the vertical and horizontal axes
represented on a logarithmic scale (focusing only on the downflow regime of
XDI < 0). The dashed line overplotted on the histogram is the reference line
of X48 XDI / | XDI |
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Statistical Properties of Convection : probability density

cooling-driven S-grad-driven

・Probability density is also different between models.
- In the cooling-driven model, the faster downflow 

  component transports more energy. 
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Figure 7. 2D histogram of probability density as a function of the vertical velocity (XDI) and the vertical turbulent energy flux (X48 XDI) for (a) Model C and
(b) Model S.
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- scaling law : 
δuzδei ∝ |δuz |3
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 for the SD model is GD-type, but that for the CD model is far from the GD-type.⟨δuzδei⟩

δuzδei ∼ κE
∂ei

∂z
,

GD model : 

κE = ⟨δu2
z ⟩ l

where

the box height   is chosen as 

the typical size of the eddies .

Lz
l

comparison with 

theoretical prediction

⟨δuzδei⟩ Yokoi,YM+23, YM+25

remarkable difference between models !



x x

z z
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Averaging method to extract the non-equilibrium effect

S-gradient-drivenCooling-driven

Main difference btw cooling-driven and S-grad-driven models: stochastic downflow plume
(non-equilibrium process)

Conventional GD model cannot adequately describe the 

non-equilibrium process in the cooling-driven convection. 

●

How can we implement it to the transport model ?●

main difference in the upper CZ:

downflow plumes 

(stochastic process) 

To gain insights to answer this question, we developed a new 

method for extracting the key non-equilibrium component.

Time-space double averaging (TSDA) method: 

f = ⟨ f ⟩ + f′￼

(see Yokoi, YM, Takiwaki 22, MNRAS for details) 

= ⟨ f ⟩ + f̃ + f′￼′￼

A field quantity   is decomposed into three parts (overbar denotes time-average,  denotes spatial average): f ⟨ ⋅ ⟩

（mean + fluctuation : usual decomposition）

（mean + spatially coherent fluctuation +  incoherent (random) fluctuation）

with f = ⟨ f ⟩ + f̃ （time average = spatial average + deviation from the spatial average）
By varying the time window applying for averaging the simulation data, we can 

extract the information of spatially coherent fluctuation like as downflow plumes.
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Insights from the TSDA method 
With TSDA, we can see the contribution of the coherent fluctuation to the time-average of uz :

(= stochastic donwflow plume)

S-gradient-drivenCooling-driven
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RMS of  , i.e.,  depends on the averaging time especially in the cooling-driven model: ũz ũ2
z = (ūz − ⟨ūz⟩)2

- The amplitude of the coherent fluctuation (i.e., plume motion) has an eminent peak near the CZ surface
when taking short-time average. 
→ The peak is at the same place as the strong peak of the turbulent energy flux, implying that  

    the spatial distribution of it is determined by the coherent component of the fluctuation.

- As the averaging time increases, the amplitude of  becomes smaller especially in the upper CZ and ũz
finally the spatial profile becomes similar to the one in the S-gradient driven model.

→ This clearly shows that the characteristics of the cooling-driven convection related to 

     plume motions can be described by the coherent component of the fluctuating motion.

(when setting the averaging time sufficiently long (than the life time of the plume), they are smeared out)

 is the key for describing the contribution of the plume motion 

to the transport and the modification to the transport model. 
ũz

lower CZ upper CZ lower CZ upper CZ

●

Vertical profile of  (RMS) as a coherent fluctuation of the vertical velocity for two models :  ũz●
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arbitrary parameter  is determined by the least square fitting.C

Enhancement of  in the CD model can be well-explained by modified GD model with plume's contributions ⟨δuzδei⟩

δuzδei ∼ κE
∂ei

∂z
,

κE = ⟨δu2
z ⟩ lwith

(conventional GD model) (modified GD model with non-equilibrium plume effect)

δuzδei ∼ κNE
∂ei

∂z
,

κNE = κE [1 − C⟨ρ⟩−1/3⟨(ũ ⋅ ∇)u′￼
2⟩]with

(See Yokoi, YM+22 for the background theory and details of the derivation)

conventional eddy diffusivity correction due to the non-equilibrium process
(  : arbitrary parameter)C

Modification to the Gradient Diffusion model

The important point is that, in the case of CD model, the ML-based approach can no longer be applied. 
The influence of plumes becomes noticeably effective in all transport processes. 

Then, what will happen to 

α
in such a CD situation ????

(and other 

 dynamo coeff.)

How does the MHD dynamo 

change its properties under

the CD convection ?

Yokoi,YM+23, YM+25

Global MHD dynamo under 

the cooling-driven convection 

should be studied to bridge the 

gap between models and obs. 

heat transport in these simulations, as opposed to the
differential rotation profile that is ultimately achieved.

Figure 2 shows the behavior of τB and τC over a long time
average of 742 days after the differential rotation profile of case
P had settled into a steady state. The units plotted are given in
the total initial angular momentum of the convection zone CZ
per year. Even averaging over approximately 50 generations of

plumes, τB is still somewhat noisy; however, it does show a
roughly symmetrical shape about the equator with local minima
at about 60° and at the equator. This mismatch between the
torque due to angular momentum losses and the corrective
torque produces significant latitudinal redistribution of angular
momentum by speeding up the mid-latitudes while slowing
down the polar and equatorial regions.

Figure 1. Snapshot of the boundary condition applied to case P. (a)Imposed radial velocity boundary condition with 400 small-scale plumes applied over 90° in
longitude, shown here repeated four times due to the four-fold periodicity of this simulation. (b)Latitudinal velocity field at the same instant, shown without the four-
fold repetition. (c)Longitudinal velocity field at the same instant. Polar vortices are visible at high latitude due to a combination of the imposed neagtive torque
removing angular momentum at high latitudes and as a consequence of the imposed periodicity. (d)Pressure field at the same instant implicitly set by the convergence
of the plumes. (e)Entropy at the same instant. Plumes are dominated by cold downflows.

6

The Astrophysical Journal, 859:117 (19pp), 2018 June 1 Nelson et al.

Driving Solar Giant Cells through the Self-organization of Near-surface Plumes
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Abstract

Global 3D simulations of solar giant-cell convection have provided significant insight into the processes which
yield the Sun’s observed differential rotation and cyclic dynamo action. However, as we move to higher-resolution
simulations a variety of codes have encountered what has been termed the convection conundrum. As these
simulations increase in resolution and hence the level of turbulence achieved, they tend to produce weak or even
anti-solar differential rotation patterns associated with a weak rotational influence (high Rossby number) due to
large convective velocities. One potential culprit for this convection conundrum is the upper boundary condition
applied in most simulations, which is generally impenetrable. Here we present an alternative stochastic plume
boundary condition which imposes small-scale convective plumes designed to mimic near-surface convective
downflows, thus allowing convection to carry the majority of the outward solar energy flux up to and through our
simulated upper boundary. The use of a plume boundary condition leads to significant changes in the convective
driving realized in the simulated domain and thus to the convective energy transport, the dominant scale of
the convective enthalpy flux, and the relative strength of the strongest downflows, the downflow network, and
the convective upflows. These changes are present even far from the upper boundary layer. Additionally, we
demonstrate that, in spite of significant changes, giant cell morphology in the convective patterns is still achieved
with self-organization of the imposed boundary plumes into downflow lanes, cellular patterns, and even
rotationally aligned banana cells in equatorial regions. This plume boundary presents an alternative pathway for 3D
global convection simulations where driving is non-local and may provide a new approach toward addressing the
convection conundrum.

Key words: convection – methods: numerical – Sun: interior – turbulence

1. Deep Solar Convection

Guided by both theoretical and observational arguments, we
seek to explore the effect of a stochastic plume boundary
condition in global solar convection simulations. Past global
convective models have generally used impenetrable upper
boundary conditions both for numerical simplicity and because
of the impressive triumphs of such models in reproducing solar
differential rotation (Brun & Toomre 2002; Miesch et al. 2006;
Fan & Fang 2014; Gastine et al. 2014; Karak et al. 2015),
exploring the strength, topology, and variability of dynamo
action (Browning et al. 2006; Brown et al. 2010; Guerrero &
Käpylä 2011; Racine et al. 2011; Gastine et al. 2012; Nelson &
Miesch 2014), and the nature of the deep meridional circulation
(Featherstone & Miesch 2015; Hotta et al. 2015; Passos et al.
2015). These successes have all been achieved for simulations
that not only do not treat the near-surface layers and the
granular and supergranular scales of convection that reside
there, but that also do not consider the effects of near-surface
flows on the dynamics of the deeper, global-scale convection
other than the transport of the solar luminosity. Here we present
an alternative implementation of the impact of near-surface
convection on giant-cell convection in a 3D global solar
simulation.

One of the touchstones of global solar convective simula-
tions has been the reproduction of solar-like differential
rotation. Simulations maintain solar-like rotational constraints
on their convective flows by balancing their inertial and
Coriolis forces. In order to achieve the needed strong rotational
constraints, modelers have often found it necessary to

artificially enhance the dissipation, decrease the luminosity,
or increase the rotation rate of their simulations, and thus
maintain the fast-equator, slow-pole pattern of differential
rotation observed in the Sun. In addition to the clear problems
this presents for models which seek to understand the solar
differential rotation, this points to a larger question of why
global convection models appear to be incorrectly simulating
aspects of giant-cell convection, such as its amplitudes and
scales, particularly for the highest levels of resolution current
possible (O’Mara et al. 2016).
In this paper we will explore a new upper boundary

condition which may provide a pathway toward highly
turbulent solar-like simulations that incorporate additional
effects from near-surface convection and produce significantly
different giant cell convective flows. These flows are capable of
achieving solar-like differential rotation, even at high resolu-
tion, using the solar rotation rate and luminosity. We will show
that the use of a stochastic plume boundary condition designed
to mimic near-surface convective downflows can substantially
alter the resulting giant-cell convection by changing the nature
of the convective driving, shifting the scales at which the solar
enthalpy flux is transported, and altering the relative contrib-
ution of upflows and downflows. Further, we will show that
this can be done while still producing convective giant cells
through plume self-organization and that the resulting flows
achieve a higher level of rotational constraint than a
comparable simulation with an impenetrable upper boundary.
This bodes well for generating the solar differential rotation,
which is thought to arise from the Coriolis-induced Reynolds
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influence of the plume is studied in the HD simulation, but not MHD



Discussion ① penetration depth of downflow plume
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Experiment : penetration depth of the plume seems to depend on Pr :

In the Sun and stars with Pr ≪ 1, a lot of plume may penetrate the entire CZ  (like Spruit's concept) 

super-adiabatic
(granule

& super-granule)

adiabatic

or sub-adiabatic 

(filled by plumes as 

main energy carrier)

slow, 

small-scale 

turbulence

downflow

plume

tachocline

magnetic flux should be 

supplied by plume to tachocline

(YM in prep.)

in such a situation, distributed dynamo can be operated ??

→ tachocline may be better site for the dynamo 

See, Bekki-san's talk in this session about the adiabaticity of the CZ deduced from the analysis of inertial modes. 



Discussion ② impact of plume on the dynamo in M-dwarfs 
Lx-Ro relationship (Wright & Drake 2016, see Wright+11) 

mechanism that does not rely on a shear layer. Existing dynamo simulations for fully convective stars 
succeed in generating magnetic fields, but are unable to predict their behaviour as a function of the rotation 
rate17. However, it seems unlikely that both partly and fully convective stars would have the same rotation–
activity relationship (requiring both their dynamo efficiency and rotational dependence to behave in the same 
way) without their dynamo mechanisms sharing a major feature. 
 
A third possibility is that convection in the cores of fully convective stars could be magnetically 
suppressed27, leading to the existence of a solar-like tachocline, although some studies suggest that 
convection would not be completely halted, only made less efficient28. Furthermore, the field strengths that 
are necessary for such a transition are 107–108 G (refs 28, 29), orders of magnitude larger than the fields 
thought to exist in the solar interior and at levels that simulations suggest are impossible to maintain30. 
 

 

	
Figure	 1.	 Rotation–activity	 relationship	 diagram	 for	 partly	 and	 fully	 convective	 stars.	 Fractional	 X-ray	
luminosity,	LX/Lbol,	plotted	against	the	Rossby	number,	Ro	=	Prot/τ,	for	824	partly	(grey	circles)	and	fully	(red	circles)	
convective	 stars	 from	 the	 most	 recent	 large	 compilation	 of	 stars	 with	 measured	 rotation	 periods	 and	 X-ray	
luminosities7.	 The	 best-	 fitting	 saturated	 (horizontal)	 and	 unsaturated	 (diagonal)	 rotation–activity	 relationships	
from	that	study	are	shown	as	black	dashed	lines.	The	four	slowly	rotating	fully	convective	M	dwarfs	studied	here	are	
shown	 in	 light	 red	 (error	 bars	 indicate	 1	 standard	 deviation).	 The	 uncertainties	 for	 the	 other	 data	 points	 are	 not	
quantified	 but	 will	 be	 comparable	 to	 the	 M	 dwarfs	 for	 the	 Rossby	 number	 and	 approximately	 twice	 as	 large	 for	
LX/Lbol.	
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ROSAT, Chandra

(full CZ)
⚫︎: rapidly-rotating M-dwarf 
⚫︎: slowly-rotating M-dwarf 

: : solar-type (CZ + radiative zone)
sun

・Lx : the indicator of the magnetic activity
・Regardless the internal structure, 

    the Lx-Ro relationship is similar.
→ similar dynamo mechanism works in F,G,K and M
→ distributed dynamo should be that ! 

(because there should not be tachocline in M-dwarfs)

But, if the convection is cooling-driven, 

or

weekly 

sub-adiabatic core

weekly 

sub-adiabatic shell

No tachocline

tachocline-like 

layer may exist ??just a speculation

Sun's convection model is deeply related not only to solar/stellar 
activity, but also to the other astrophysical plasma dynamics.

stable

zone

downflow 

plume



2種類の熱対流モデルを 

観測的に区別する方法はあるか？

：トポロジカルデータ解析による推定



(1) S-grad-driven (SD) model (2) Cooling-driven (CD) model

Solar observation

x

y

x

z

観測データから太陽熱対流の特徴量を抽出する
(エントロピー勾配駆動型と冷却駆動型、太陽の熱対流モデルとしてどちらが相応しいか)

Method : トポロジカルデータ解析（Topological Data Analysis：TDA） 

(3) Obs. (DKIST & Hinode/SOT) ©DKIST

z

x

y

g

512×512×128 512×512×128x

z

YM+24

- Basic eqs：compressible HD eqs【Cartesian box】
- polytropic atmosphere with an index 【CZ only】: m

(2) Cooling-driven : m = 1.495 (upper 5%) + 1.5 (95%)
(1) S-grad-driven  : m = 1.495 (whole CZ)

(Newtonian cooling is imposed on the upper 5% of CZ in the CD)

(Lx/Lz = Ly/Lz  = 4)
ρbottom/ρtop = 300 
Pr   = 1.0 

Ra  = 4.2×106

● データセット: (1) S-grad-driven (SD), (2)Cooling-driven (CD), (3) Obs. (DKIST & Hinode/SOT)  

top view top view

side view side view

similar to Cossette & Rast (2016)NO rotation

Yokoi+22

(There is 0.2% difference in the input energy between models)



(1) S-grad-driven (SD) model (2) Cooling-driven (CD) model

Solar observation

x

y

x

z

● TDA is performed on each data set and compare the results. 

(3) Obs. (DKIST) ©DKIST
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The small deference of the polytropic index cause the structural difference between models. 

Basic properties of convective motion are common: upflow cells surrounded by downflow networks 

- The topological structures hidden in the varieties of convection data is studied. 
- QUESTION: although the convection patterns are similar between data at a first glance, 

                       is there a remarkable difference in the topological property between them ? 

top view top view

side view side view

CD model has a spectrum in which the power is suppressed at the smaller k, similar to sun's conv. spectrum.

Method : トポロジカルデータ解析（Topological Data Analysis：TDA） 

観測データから太陽熱対流の特徴量を抽出する
(エントロピー勾配駆動型と冷却駆動型、太陽の熱対流モデルとしてどちらが相応しいか)



で、何をするのか ? →データから「穴」の情報を抽出する

穴は何個見えますか？ (ポイントクラウドデータ) ?

1 hole

2 holes
2 holes 

（Topology studies how spaces are connected and how their structure remains unchanged through continuous 

   deformations, focusing on the relationships and connections between points, shapes, and surfaces.）

= = = = = =

0次元の穴（連結成分） 1次元の穴 (リング)

　ホモロジー：「穴」の数を数える数学的技法

　トポロジー ： もののつながりを記述する数学の概念

Deng & Duzhin (2022) 

我々は無意識にデータを粗視化して「穴」の存在やそのサイズ、形状を認識できる。 

では穴の情報（サイズや形）に関する情報を数学的にどう抜き出すか？

（since Poincaré）

（originally proposed by Edelsbrunner et al. (2000), and further developed by many others, such as Carlsson (2005)）

　パーシステントホモロジー (Persistent Homology : PH)     
　データからトポロジカルな情報を引き出し定量化する新しい手法

「穴」（連結成分、リング、空洞）の数を, 数学的に計算科学的にどうカウントするか？

（ノイジーなデータから穴の情報を抜き出す方法）

⚫︎

⚫︎

⚫︎



パーシステントホモロジーとパーシステント図（PD） 
パーシステントホモロジーでは「穴」をどう捉えるか？ : その手法（ポイントクラウドデータの場合）

1. The point cloud data is supposed and given the sphere (radius r) centered around each data point.

2. You increase the radius of the sphere gradually (equivalent to the changing resolution) [~ filtration ]

3. By calculating the homology with changing radius at multiple stages, we capture the shape.

http://zavalab.engr.wisc.edu

Figure 2: Persistence homology methodology for point clouds: each point cloud is converted into
a geometric object via a filtration where the topology is measured at each point in the filtration. At
certain points in the filtration topological features, such as the holes above, appear and are eventually
filled. The ✏ value at the appearance and disappearance of these features are recorded as birth and
death in the filtration. The birth and death of the topological features are represented as points in a
persistence diagram, with x=birth and y=death and persistence defined as (y � x). The persistence
diagram encodes the topological evolution of the data during the filtration and can be used directly
to separate point clouds of different shape and cluster those of similar shape. In this illustration we
create a representative classification plot that demonstrates the separation of example point clouds
based upon the persistence of the largest and second largest (which is zero in some cases) hole(s) that
appear and disappear during the filtration.

data in terms of connectedness and topologically important features [31, 34]. In the following discus-
sion, we use R to denote the set of real numbers and Z to denote the set of integer numbers.

Figure 3: Examples of k-dimensional simplices for k = 0, 1, 2, 3. A simplex is a generalization of a
triangle in high dimensions. 0 simplices are vertices (points), 1-simplices are edges, 2-simplices are
triangles, and 3-simplices are tetrahedra.

3.1 Simplices and Simplicial Complexes

A simplex is a generalization of a triangle from 2D to other dimensions (e.g., a tetrahedron is a 3-
dimensional simplex). Simplices spanning dimension k = 0 to dimension k = 3 are shown in Figure
3. The formal definition of a simplex is as follows.

4

filtration

r

resolution of data being lower
(radius of (imaginary) sphere being increased)

filtration
H1 = 0 H1 = 2 H1 = 1 H1 = 0 See, Smith, A.D + 21

「穴」の生成と消滅の半径 （半径を次第に大きくする手続：フィルトレーション） がそれぞれの穴の形や構造を特徴づける 

r = 0 r = r1 r = r2 r = r3

The points around 

the diagonal line on PD

= noise

(they don't have important meanings)

PH: 

The points with longer 

lifetime (far from DL) = hole
→ characterizing the shape and structure of data

(short lifetime)

data filtration PD

∴  The birth and death of the holes are represented as points in a persistence diagram (PD), 

    with x=birth_radius and y=death_radius and persistence defined as (y − x).

ex) point cloud

★ Procedure of TDA:

holes are born hole1 disappear hole2 disappear

H1 : 1D homology (ring)



場の量（グレイスケールイメージ）の場合のパーシステント図

With the TDA, we study the topological structure of the solar convection (focusing of H1 : ring). 

ex) grayscale image (field data such as velocity and temperature)

1. set (change) the threshold value t = ti

・threshold value when the birth of hole：t = tb

・threshold value when the death of hole：t = td

Birth

De
at

h

tb

td
Hole1 (tb,td)

t=t1 t=tb ・・・

・・・ ・・・ t=td

2D dist. : f (x,y)

y
x

f

How can we study the topological structure of the field data ? 
(What type of filtration is used to extract the topology information?)

Level-set method
Instead of changing the radius of a virtual sphere in the case point cloud, 

we set a threshold value and perform filtration on the image by changing it.

2. the region with the value of f < ti is filled by black 

3. calculate the homology and extract the information of hole
(in this demonstration, "hole" is corresponding to "hill" in data)

y

x

birth-death pair, 

 (tb, td), for each hole
→ making PD

(lifetime = td - tb) persistence of hole

= lifetime of hole

iteration

See, e.g., Smith, A.D + 21
for more details



Topological Data Analysis
: application to the solar convection (model and observation) 
with GUDHI and Homcloud (python libraries) 
https://gudhi.inria.fr/index.html
https://homcloud.dev/index.en.html
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Persistent Diagrams for Two Numerical Models

2D histogram (color indicates 

the density of points/bin)

This is a type of 

"dimensionality reduction" : 

the distribution in PD 

= "feature" of thermal convection

with the data of velocity field (Uz)

remarkable 

long-lived structure

remember that points around the 

diagonal line are a kind of noise

We can construct one persistent diagram (PD) from one snapshot data of the velocity distribution at the surface.



all the sequential data are gatheredPersistent Diagrams for Two Numerical Models

with Uz

with Uz

with δT

with δT = T - 〈T 〉

Additionally to the PD with Uz, PDs with δT (temperature fluctuation) are also generated : 

②
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"peninsula" structure is remarkable. "peninsula" is more pronounced 

no long-lived 

structure

The "peninsula structure" 
with a long-lived properties 
characterizes the PD of CD

The "peninsula" structure  

is not remarkable especially 

on the PD with δT.



PD with obs. data：DKIST / Hinode SOT 

 960×960

 1080×1080

Hinode SOT

PD from DKIST (high-reso) data is similar to that of the CD model. 

※ points generated 

    around the diagonal 

    line (DL) is due to noise.

②Cooling-driven model (CD)

①S-grad-driven model (SD)

with δT

with δT

DKIST

brightness 

brightness

similar topological


structure

●narrow field and high resolution obs. 

  → peninsula-like structure (DKIST)
●wide field and low resolution obs.

  → vertical horn-like structure (SOT)

Why the properties of PD different btw observations ?

Swedish 1m Solar Tel. data 

also  provides a similar PD



Inverse Analysis (i-TDA)
: Where does the "peninsula" on PD come from in the real space ?

(understanding Physics)



PD

forward

analysis

(TDA)

Where does the peninsula on PD come from ? - inverse analysis -
・advantage of TDA：inverse analysis is possible (data ⇄ PD)

(we can see the correspondence between the feature structure on PD and the original spatial structure).

DATA

inverse 

analysis

(i-TDA)

from the specific data on PDcorresponding structure in the real space

i-TDA
i-TDA

With i-TDA, we can get the information about the region which is deeply related to the 
peninsula. Q: Why do these regions cause the "peninsula" with long-lived property on 
PD ?



⚫︎filtration with level-set method (change threshold value by hand for demonstration) : 

(1) (2) (3)

(4) (5) (6) zoom up

result of i-TDA

compare⇄

@final filtration stageThe peninsula on PD should be originated from localized high-V updrafts !

The structure that remains even when the threshold is increased 

is the region where localized high-velocity updrafts exist.

Where does the peninsula on PD come from ? - inverse analysis -

※ downflow region is over-plotted with red color.

(7) (8)

(9)



Then, what is the localized high-V updrafts ?
The formation mechanism of localized high-V updrafts is studied.  

①
②

upflow : red tone

downflow: blue tone

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

@CP1

@CP2

1D-velocity profile
strong updrafts

⚫︎almost all of localized high-V updrafts are accompanied 

   with stronger downflows and are formed as the wing of them !

@CP2@CP1

⚫︎ Q: Then, what is the physical origin of this structure ?
A: That seems to be the downflow plume !!! 



(e.g, Rast 1995, 2003)
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Simulation study of the formation of donwflow plume (cooling-driven) 
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profile of the vertical velocityvelocity vector

Accompanied with CD downflow plume, wing-like strong updrafts are formed 

Rast 1995

downflow with wing-like 

updrafts in our study 

our study

What is suggested : 
① The "peninsula" on PD is the sign of the existence of a lot of downflow plumes in CD model.  
② DKIST data suggests that there are a lot of "hidden" localized structure due to downflow plume.

(accompanied with strong updrafts)

(In contrast, such structure could not be resolved in the SOT data, thus no peninsula there )
☑  Compared with the plume's profile shown in Rast 95, that seen in our CD model seems to be broader 

     (up-down asymmetry is weaker), suggesting the resolution in our simulation is still not enough. 

DKIST Cooling-driven model

with δT

DKIST data seems to provide the “peninsula” with relatively longer lifetime than our CD model, 
implying the existence of stronger "thread-like" downflows with higher up-down asymmetry there, 
similar to Rast 95, than that seen in our simulation.
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The regions of high-V upflow, which is suggested by Rast 95, 

is compatible with the regions fo high-V updrafts found in our study. 



注）恐らくDKISTのデータは論文化する時に使えない. 

Convolution with a Gaussian kernel of 32×32 when assuming different dispersion σ : 
σ = 4.0 σ = 8.0 σ = 12.0 σ = 16.0

original dataPD with original data

cooling-driven model

f(x, y) =
1

2πσ2
exp (−

x2 + y2

2σ2 )
Gaussian kernel



Hinode SOT

observation by Hinode SOT

Changing the bin width and bin number for visualization of PD obtained from cooling-driven conv. data:  
σ = 8.0 σ = 12.0

Similar structure of PD to that in obs. can be reproduced by corse graining of cooling-driven conv. data. 
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(a) S-grad-driven model (b) Cooling-driven modelSolar observation ©DKISTx

y

x

z

x

z

Driving mechanism of the solar convection deduced from TDA

The "peninsula" on

PD comes from 

the localized high-V

updrafts in the data. 

Localized up/downflows 

exist, but they may not 

be due to the localized δT

similar

・A key for solving "conv. conundrum" may be

   hidden in the topological structure of obs. data. 
・High-resolution observation ＋ TDA 

Localized high-V updrafts

may not be resolved in the 

data of SOT & SST ?

→ new aspect of the solar convection

SD CD



まとめ：太陽の熱対流の駆動機構は？

ASH
r = 0.98R�

stagger
r = 0.98R�

Revised HDS2012
r = 0.96R�

Ring pipeline
r = 0.984R�

Granulation tracking
surface

Revised GHFT2015
r = 0.96R�

Figure 3.3: Summary of the estimates of E�. As in Fig. 3.2 the black curves show
the revised estimates from HDS2012 and GHFT2015. The figure also shows the new
granulation-tracking measurements (magenta) and new measurements from the ring-
diagram pipeline (blue). The curves corresponding to the ASH and stagger simulations as
described in GB2012 are shown in grey.

3.5 Conclusions and discussion

Figure 3.3 summarizes our current understanding of the spectrum of surface and subsur-
face east-west velocities from observations and simulations. We removed the curve for
R2012 for the sake of simplicity; this curve is compatible (within a factor of two) with
the new surface measurements.

The two ring-diagram estimates of E� shown in Fig. 3.3 are not compatible within
the error estimates (see Fig. 5 from GHFT2015; the error estimate on the rms v� at ` =
10 is less than 10%). Preliminary work (Nagashima et al. 2020) shows that the ring-fit
parameter estimates from local power spectra by the ring-pipeline model rdfitf (Haber
et al. 2000) and the multi-ridge fitting of GHFT2015 are not di↵erent enough to explain

72

Proxauf 2021

Convection conundrum
- 巨大胞スケールの構造が観測されない

- シミュレーションの対流速度は観測より3桁大きい

太陽ではどうやって 
エネルギーを輸送しているのか？

数値モデル： 冷却駆動型 v.s., エントロピー勾配駆動型
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 TDAで制約がつけられるかも

エネルギー輸送の性質が変わる
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