Rotating MHD fluids in planetary interiors:
convection, dynamos, and waves

Kumiko Hori

National Institute for Fusion Science

Sy
mps, ({7

MAX PLANCK INSTITUTE
FOR SOLAR SYSTEM RESEARCH

gfd seminars 1
UNIVERSITY OF LEEDS Hokkaido, 15-16 March 2025

H
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Fluid cores (liquid iron outer cores)
in rocky planets

— cf. viscous/rocky mantles

— e.g. our Earth

Outer envelopes (ionised/metallic hydrogen)

in gaseous planets
— e.g. Jupiter

Hosting their large-scale magnetic fields

MHD of rotating fluids
— as a blend in the classic subfield
— G”A” FD if you like..
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Fluid cores (liquid iron outer cores)

in rocky planets Ze {’*
— cf. viscous/rocky mantles :

— e.g. our Earth ‘\ W0

Outer envelopes (ionised/metallic hydrogen) \

in gaseous planets
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— e.g. Jupiter

Hosting their large-scale magnetic fields

MHD of rotating fluids -
— as a blend in the classic subfield
— G”A” FD if you like...
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« MHD of rotating fluids in spherical shells (or plane layers)

— in the Boussinesqg + MHD approximation (for constant diffusivities)

0 P’ 1
+u-V u+2ﬂ><u——V +ong"r—|——3><B—|—1/V2 V-u=0
ot £0 P0

0 d1y

— : 7 — 270 . 2

<8t+u V) dru + kV

9
(a+u-V)B:B-Vu+nV2B V-B=0, jpj=VxB

s WWERERED)AERKXRMNSMEMATTLSI., EZDILFE
— TEAEMTGRIAED)EBRAREKXZDEZEIZ > DNs” DHFAE
— WHLK e.g. Greenspan (1968), Chandrasekhar (1961), Roberts (1967)

— XE/BREODEWNEIEEFE SN

» ELRTE: R HIET A, =B KE. (BLIR. etc)



[ RE 5% 7€

(a+u V)u+2ﬂ><u——V +()ng/T+i]XB—|—I/V2 V- -u=0
ot Po P0
Of interest:
— FETEIE Ek=Ta1/2~107%5-10° << 1 Core
— [EME/FERIE Ro=ReEk~ 105 << 1
* leading to a geo-strophic balance
— A —ILEE §=D/L~0(1) (cf. atmosphere, ocean)

— HESURARTE(?) Elsasser #1 A = B2/upnQ = Q Ek = O(1)
* |leading to a magneto-strophic balance (Acheson & Hide 1973)

 Earth/planet-like LIECoMN 5  (cf sun/solar)

TRAK/EBIZWANARELRIEN RIS (1255)
— ¥R, IS IRE- S TEEBIZRTH-L



Convection

* Nicely introduces the subject

— more details in FDEPS lectures by Jones (2017),
Christensen (2006)

* Rotating magneto-convection (no Q no By; Ishiwatari et al. 1994)
(e.g. Chandrasekahr 1952-54; in lab, Nakagawa 1957-59)

— where a background magnetic field B, is
externally imposed

* cf. dynamos, where magnetic field B is self-excited

— in plane layers where Q || By Il g

\'

THE THERMAL INSTABILITY OF A LAYER QF
FLUID HEATED FROM BELOW

4. THE EFFECT OF ROTATION AND MAGNETIC FIELD

49. The like and the contrary effects of rotation and magnetic
field on fluid behaviour

I~ the last two chapters we have studied the effect of rotation and
magnetic field, acting separately, on the onset of thermal instability in
layers of fluid heated from below. In some respects the effects are

remarkably alike: they both inhibit the onset of instabilitv: and thec > 3. Examples of streak photographs of the convective motion at the to
ercury obtained for three different strengths of the magnetic fields; (

(Chap. 5; Chandrasekhar 1961) (Nakagawa 1959) =9 PO H =G, 0= 349X 102, 3000 G, Qe




Convection (cont’d)

Linear stability analyses
— the linearised, governing equations: e.g.

au 2 _ ~ R_"’ Q ~ -~ "'2~
atN—l——ezxu VP+PQeZ Pmezxg—l—Vu
00 . 1=,
Do, Vit % ' | | i
ot Pm | A=0
— with a reduced numbers of parameters s 00 i}
o ith. rotation
agByd? v v B2d? v 12 L e, 63 W!
Ra = Vg . Pr=—, E=g5. Q= pu(;wz’ Pm =~ E 1077 = A=10 E=10°
g 1010
To yield the Ra needed for the instability <
. 5 108 F ;1/3)
— e.g. for the stationary mode: % wit
Ki+m2 [, , A2 K+ m? T
Rac——Ka (K§ + m2)? +7rQ+E2 (K2 + 72 + On? §
. . : : 5 10
— increases when either rotation (Q = 0) or magnetic ©
field (E = o0) alone is at play 102

— decreases in the presence of both as Q E = A = 0(1) o1 1 10 100

. horizontal wavenumber K
* to get back to ~“nonrot. nonmag. behaviours (!) :

(after Chandrasekhar 1961)



Spherical convection

* Linear stability in spheres/spherical shells

— e.g. Fearn 1979; Jones+ 2003; Sakuraba 2002;
also a review by Zhang & Schubert 2000

* Given a proper condition, as A, =2 O(1)
— thermal instability, Ra = O(E*3) > O(E?)
— wavenumber, k.;; = O(E1/3) = 0O(1)

* nonaxisymmetric modes preferred

— frequency, o = O(E%3) > 0(1)

Rotating magnetoconvection

0

applied by Malkus field B, = Bys 7 T e T T
(Jones et al. 2003) M= Ay B8




applied by uniform axial field B,

Spherical convection

Linear stability in spheres/spherical shells

— e.g. Fearn 1979; Jones+ 2003; Sakuraba 2002;
also a review by Zhang & Schubert 2000

Given a proper condition, as A, =2 O(1)
— thermal instability, Ra ;= O(E*/3) = O(E?)
— wavenumber, k.;; = O(EY/3) = 0O(1)

* nonaxisymmetric modes preferred

— frequency, @ =O(E%3) > 0(1)

velocity
(cont.int.= 5, max.= 48.11)

Rotating magnetoconvection

(Sakuraba 2002)

odd Polar mode

(a) RAYLEIGH NUMBER
~ Ra®(A,m) ~ Ra°(A,m)

2000 { M L 2000 1
A\
1000 L 1000 \ \\\

L 500 123t
74
\/ ]
5 2 /L 100
i
i T 809
. . ; 20 . r ‘
0.0% 0.1 1 10 100 001 01 1 10 100

(a) RAYLEIGH NUMBER (b) PHASE VELOCITY

2000 1

, ‘ “o0 ‘
form=1 —

| 200

100

2

L

20

10 4

0.01

T T T L T T
0.1 1 10 100 0.01 0.1 1 10 100



Busse’s annulus model

Useful to analyse key properties of rotating 12
spherical convection (handy..)

Settings (Busse 1970; MHD ver. in 1976) :
— sloping boundaries (with a small angle y)
u==*yu, at z==x1L/2
to give a topographic B =-2Q d (In H)/dx
— almost independent on z (“QG”)
— Q1glB,(and/orgll B,)

To give a reduced set of linearised equations (dimensionless):

0 0Y  Ra 00 Q (0 0 3
Z g 7y x _ D3AT
(8t Ag) JAY G| y Pr oy + P (ay + ’P&x) Aag Ra = ag -
0 1 oY 4x0D?
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Busse’s annulus model (cont‘d)

— for Ay = O(EY3)

The key properties of spherical convection &
reproduced by the annulus model g
N
=)
[
The marginal curve comprises distinct S
modes, depending on the regimes T
— thermal Rossby modes (Busse 1970) for small A, E

slow magnetic Rossby modes (Pm/Pr>> 1)

or another slow diffusive modes (Pm/Pr << 1)

3
The Ay = 0(1) regime is well characterised %
by a balance amongst the Lorentz, %
buoyancy, (p-grad,) & Coriolis forces S
— with no viscous roles (cf. the rotating conv) =
C
— the magnetostrophic/MAC balance %
o
At B* = 108

(KH, Takehiro & Shimizu, 2014)
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Some remarks

 The effects are expected for
— sufficiently rapid rotation, E << 1
* no larger than E = 10%in linear analyses
— a proper magnetic field B, (direction & morphology)
— a proper condition: e.g.

* when a fixed heat-flux boundary condition rules,
the magnetostrophic

1018 L B ) B ) B ) B B 1018 LA NN .4 B L I L BB B
properties will become o |
1010 [ A0 . 10'° | Ag=0"s T
more relevant _ _ 070
10" 104 F g3 _E=10°
T \
5 102
o}
S
2 10
- 10
Ry
Q
g 10°}
g
2 10°
o
2 2 2 2
s 47 K+
Ra = = (K2 4+ 72)2 H 10%
e = 2 (K +7°) +7rQ+E2 K2+ 1) 1 O _ |
(o2 o0 B fixed flux b.c. | 2 [0 5> [ fixed temp b.c.
In plane layers where Q || By Il g P Y EY R R R R
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(KH, Wicht & Christensen, 2012)



Some remarks (cont’d)

* The problem may be regarded as a Ll I R T A A
. . | magnetostrophic Do
doubly diffusive system "I (durves) [
Q 0.8 E]_—————B—\‘\——:Q ————— E]————B————G————B———,!/G—————‘,/— ————————— ]
) I*Z 06 "'] -
* e.g.Inthe linear Busse-annulus model &
0.4 | ;o -
— ~QKy%/Pm as -Rag/Pc 0| /" doubly diffusiye

°.7 o (symbols

r P IR, -

-

— e.g. oscillatory regime (g =Pm/Pr>1) asa 0

diffusive regime (Le = Pc/Pr > 1; Ra; > 0, Ra, < 0) ot o n
e 08F o G mma .
. . '*: 0.6 - ' -
— identical when Q || By L g (after Takehiro-san; = 04F | -
in spheres, Sakuraba 2002) °‘§ e e
1 'SR T T T I
e 0.8 1 N RE T Q----@---- @B @i R
: e . wooer }
e Rotating double-diffusive convection also = oal ]
3 0 o _——Zo==- o o—pg——-g--—q
H : X _ | l Ll ! Ll
yields the Ra-drop if -Rag/n™* = O(1) 02 bt

— cf. Elsasser number A ~ Q/n* [-Rar, -Rag]im*

— - * — 1/3
but not when -Rag/n* = O(E*%) Doubly-diffusive vs. magneto- convection

at 1/m* = 108 (KH & Simitev, unpublished)



Dynamos

* Rotating magnetoconvection studies have suggested
— as magnetic field B is strengthened to A = O(1),
the thermal instability Ra,;; drops

* as well as the wavenumber k_.;;, and wave frequency o

* This led to a speculation of dynamos in the regime:
‘strong-field’ dynamos

Flow vigor
U or Rm'?

My

— or magnetostrophic dynamos, etc.

— vs. ‘weak-field’ dynamos in the
rotating/viscous regime

> Ra

R;cmag R;lc :
=0(E") = O(E-*3)
Field strength '

B or A4 ﬂreng field dynamo
Ado(1) :

-
2 =
-
-

AYO(E) W’”amo
(after Roberts 1978; KH & Wicht 2012; f ' >n

Raymag Ray a
also Dormy 2016, 2025) subcritical




Do magnetostrophic dynamos exist at all?

Long controversial whether the existence could be proven
— some indications in plane layer dynamos (e.g. Stellmach & Hansen 2004)

— what about in spherical dynamos
* negative? (e.g. Soderlund+ 2012; Roberts & King 2013)
* positive? (e.g. Sreenivasan & Jones 2011)

To explore

— the key signatures as predicted by rotating magneto-convection
* length scale: spatial structures, scaling laws
* thermal instability: heat transfer, subcritical/strong-/weak-field dynamos
* time scale: waves/oscillations
— the force balances
* base on the solutions/scaling
* identifying the regime (e.g. Yadav+ 2016, Dormy 2017), better diagnosing (ongoing)



Length scales

axial vorticity

* Enlarged convective structures identified

— inside the TC (e.g. Sreenivasan & Jones 2005)

e cf. in plane layers (e.g. Rotvig & Jones 2002;
Stellmach & Hansen 2004)

» cf.in lab (e.g. King & Aurnou 2015)

— outside the TC (e.g. Sakuraba & Roberts 2009;
Hori+ 2010; Takahashi & Shimizu 2012)

* when generated magnetic fields were dipolar

* clearer when a fixed heat-flux b.c. ruled? dynamo

iH,T dynlamo
I

r H,F dynamo 1
L l l IH,F non-mag -------- -

—
S,

* Characterising length scales feeds into
scaling laws

—_
o-
N

time-averaged kinetic
power spectra

1 0-3 ] ] ] ] ]

atE = 104, Ra/Ra, = 6.5, Pm/Pr=3& A~ 8 0 5 thwl 15 20 . 25 30
(KH, Wicht & Christensen 2010) azimuthal wavenumber m



Subcritical, strong- and weak-field dynamos

Subcritical branches, as well as two

b < 10 p 1% %
branches (bistability), observed E . A
i e;
— quite deep in some cases: Ra = 0.25 Ray,, ; 1 m i
— but none for Ra < Ra_,,, (cf. plane layer) % V ff f
0 |
w 0.1 5
The subcritical/upper branch: Radyn'ma Radyn
— A = 1 with dipolar fields only 1 <:> 10
— weaker flow vigor (Rm > 100 ~ Rmg, ™€) E 400
& larger convective structures (1 < m < 4) o 350 L | grow,ng from 1 |
‘ ield’ £ seed field - %
— ‘strong-field’ dynamos? S 300 % i -
@ 250 | t -
The lower branch: © 200 |- nonmagnetic © 5 7
: : : > 150 |- X -
— A <1 with non-dipolar fields only 5 100 kL £22 growing from finite- -
— flow vigor (Rm >200 ~ Rm,,) & % 50 | amplitude field _
convective structures (4 < m < 8) S 0 T S S
similar to the nonmagnetic convection g 1 10
Ra/Ragqn,

_ { _ H ) ?
weak-field"” dynamos: normalised by onset of convection

at E=104, Pm/Pr=3 (KH & Wicht 2013)
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Spatial structures N
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* On the strong-field branch  On the weak-field branch

— only dipole-dominated fields — only multi-polar fields

-A=x1 — A<1

Radial field at the > 4
outer boundary Q
A A‘ ¢ "
) \ N
N 4

non-dipole dominated

smaller scale
~ nonmagnetic /4
convection

Axial vorticity in the
equatorial plane

positive: yellow to red
negative: light to dark blue




Termination of planetary dynamos

* During a planetary evolution, Magnetic Planetary evolution
. . ' Core cooling
subcritical dynamo action can fleld strength
B2 or A b
— maintain a strong field until its termination 4 K Strongfield dynamo
— complete the shut-down Mo @
e Dynamo action cannot simply restart, | . TTTTTTes
once buoyancy anomaly and magnetic A$O(E) _
field become lower than its critical points Radyr'-]mag
Subcritical heat flow out of the core
dynamo

 The scenario worked in early Mars?
(e.g. Kuang+ 2008)

— operated likely between 4.5 - 4 Ga
(e.g. Acuna+ 1999; Weiss+ 2002)

— died quickly, within 20Ma?
(Lillis+ 2008)

Br at altitude 200 km
(MGS; Langlais et al. 2004)

-50
-100
-200
-400

--650



Termination of planetary dynamos

* During a planetary evolution, Magnetic Planetary evolution
_ . field strength Core cooling
subcritical dynamo action can
B2 or A b
— maintain a strong field until its termination 4 K Strongfield dynamo
— complete the shut-down AO(1)
e Dynamo action cannot simply restart, | . TTTTe-
once buoyancy anomaly and magnetic AO(E) _
field become lower than its critical points Radyr'-]mag
Subcritical heat flow out of the core
] . dynamo
 The scenario worked in early Mars?
(e.g. Kuang+ 2008) I A - ' : gi'a'-‘i
. 'E | —=— = _
— operated likely between 4.5 -4 Ga E_100§ e — —— 2
o | By —— =
(e.g. Acuna+ 1999; Weiss+ 2002) X i e— Am
&0 — T ) .
— died quickly, within 20Ma? = TR mostlikely
(Lills+ 2008) ® OF B e i
= e with 1-6 error 1
g A He F.n |
0 2 4 6 8
Magnetic field strength at altitude 185 km Crater retention age, N(300)

for 15 large basins (Lillis et al. 2008)



Time scales

A magnetostrophic balance will lead to

— nonaxisymmetric modes: e.g. slow magnetic

Rossby waves

— axisymmetric modes: torsional oscillations

The axisymmetric modes identified
(e.g. Wicht & Christensen 2008; Teed et al. 2014).
— perturbations about the Taylor state

— wave equation for C’(s,t) = u’y/s

~ $3hds ’ PHo s
— propagate along a poloidal field
component B

32 C’
ot?

cylindrical radius s

— (details in part 3)

atE=10°, Ra/Ra, =8, Pm/Pr=5& A ~22
(Teed, Jones & Tobias, 2014)

fluctuating axisymmetric u’,

A
Q, z
100.00

l 60.00

== 20.00

= -20.00
-60.00

-100.00

its z-mean (u'y)/s

S5.4E4+01
1.4
1'% 3.6E+01
1.0 1.8E+4+01
0.8} 0.0E+00
o ~1.8E+01
0.4
0.2 -3.6E401
0.0 HEmmE——. S : ~5.4E4+01
0.000 0.001 0.002 0.003 0.004

time t / magnetic diffusion time



Time scales (cont’d)

z-mean radial velocity <ug>
in the equatorial plane

Nonaxisymmetric, slow modes identified:

— retrograde drifts commonly seen in
early numerical dynamos

— their speeds accounted for by total
phase speeds of wave and mean flow
advection, (oyg + ®,4,)/M, Where

B Wy _ _-772.3(7‘(2, — .5'2)<Bg>
M WR 2ppof2s? <ug > at s=0.5r,
) 0.006 B ) 1.5E403
— can propagate along a toroidal * * I R
— c 2 1 :
[ = (OMR (m=8)T Dadv)/ I
field component By E 0.004 (m ) a0
g | | B 0o0E+00
The waveforms illustrate = 0.002 .‘ b W oo
q) % R
— Nno wave trains E 7 © % /m ] I S 1OEr0S
. 0.000 L \MR(\rn=5\ \adv L L L L L —1.5E+053
— but isolated, sharp crests VR .

Azimuth / radian

atE=10"%, Pm/Pr=5,Ra/Ra, =8 & A ~ 22
(KH, Jones & Teed, 2015)

— (details in part 2)



Time scales (cont’d)

z-mean radial velocity <ug>
in the equatorial plane

Nonaxisymmetric, slow modes identified: 717.9
— retrograde drifts commonly seen in I 430.7
early numerical dynamos ~ 1436
— their speeds accounted for by total - -1436
phase speeds of wave and mean flow -430.7
advection, (oyg + ®,4,)/M, Where -717.9
. 3.2 2v/p2
O = _wﬂ _om (rs—s )(B¢> <u.’> at s=0.5r,
. A4 1000 7.1E+01
e 2ppofls Eastward | Oyt
— can propagate along a toroidal & . | 5.9E+01
field component By S | 476401
P 0] I
o 0! 3.6E+01
: o :
The waveforms illustrate 3 | 2.4E401
_ o -500 f
— Nno wave trains L ! 1.2E+01
. Westward |
— but isolated, sharp crests —1000 0.0E+00
. 0 5 10 15
— (details in part 2) Azimuthal wavenumber m

(KH, Jones & Teed, 2015)



Force balances

0.070 [T

Exemplifies the dominant balance
between Coriolis and Lorentz
terms in the axial vorticity eq.

Time t

— Reynolds term remains minor

0.002 KRR DB

0.006 !

0.000 ENITNE

The Lorentz term =, expanded into
the restoring force and its residual,

e.g.

0.008 ENO\ag@lt

at s=0.5r,

Coriolis term Z¢

JE— 0.010 MR
EL — F <B ) VJ;> + <b/ ) VJ;> 0.008 ;
+ (other terms) | ) i
+~ 0.006 F
. 0 >
— the sum of the restoring and E 0.004 B &
leading nonlinear terms tends N
to reproduce the waveforms
0.000 L

ooozx \{ 4
: \\ | — - " \ |

Chosen Lorentz terms

(52 5) (2 22)
" ! |

(KH, Teed & Jones 2017)
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The role of magnetic field

The respective nonmagnetic
convection reveals

much faster variations & smaller-
scale spatial structures

more signals from prograde drifts
(with respect to the mean flow)

A

(,u‘g—

20)52

(r2 — s2)m

<ug> in the equatorial plane

2291.9
l 13756.2
458.4
- -458.4
-1375.2
-2291.9

0.006

0.004

0.002)\

0.002

0.001 |

At s = 0.606 with <uy™> at s=0.4r,

in a dynamo (axial dipole)

) 1.57

T T T T T T T ‘l\ ‘ T T B! Ad 8.6E+OZ
Tl | f
: Ay : 5.7E+02
1 | Vupmas)tVagv =

\ . 2.9E402

: 0.0E+00
\ g —2 9E+02
\ - —5.7E+02

T | | I X\. I *86E+02
5.14 4.7 6.28

in hydro

606 with Vy(m=13] <Us> 8t s=0.41

2.564+03
1.6E+03

/.8E+02

0.0E+00

—/.8E+02

—1.6E+03
—2.38+03




Magnetic secular variation

e Possibly linked to the westward drifts or its rapid dynamics

— the nonaxisymmetric part migrating on timescales of =300 yrs
* also for ~6 yr westward drift? (Chuliat et al. 2015; Gillet, Gerick, et al. 2022)

— flow advection? (Bullard et al. 1950) or wave propagation? (Hide 1966)

more likely their mixture

Magnetic
flux (UT)

1950

1900

1800

-900

Time /yrs

flux (UT)

1700

1650

1980

Br at the top of the core (Jackson 2003)

1850 f+~1-%52

Magnetic 1750 '.;. 3 E‘.
. %

.......

-150 -100 -50 0 50 100 150
Longitude / degrees east

1950

1900

1850

1800

1750

1700

1650

150 100 -50 0 50 100 150
Longitude / degrees east

Residual radial magnetic field / mT

Nonaxisymmetric part of Br at the top of the core
at 0 °N/S and 40°S (gufm1: Finlay & Jackson 2003)



Toroidal field strength within a planetary dynamo

Assuming the wave enables us to infer
the azimuthal field

— essentially hidden beneath the
rocky mantle

— crucial for dynamo action

The approximate dispersion relation:
m3(r2 — 32)(55)

2ppof2 st

Phase speed [ deg/yrs ]

wMR:u/‘_wadV:_

— a geomagnetic drift speed of
0.56 ¢/yr at 409 S (Finlay & Jackson 2003)

— suppose half for a mean flow

— Given m=5, this implies a toroidal field
By ~ 10 mT at s~ 0.8r,

* equivalent to, or stronger than, the
poloidal part B, >3 mT (Gillet et al. 2010)

1.2

I I
magnetic Rossby: m=5 ——
‘m=8 ——
gufm1 at 40S - 1
gufm1 - zonal flow --—---

Toroidal field strength / mT (=10 G)

(KH, Jones & Teed, 2015)



After all: hunt for magnetostrophic dynamos

* Convection-driven spherical dynamos

finding (the way to) the Earth/planet-like models
(e.g. Yadav et al. 2016; Dormy 2016; Schaeffer et al. 2017) .

F, &+ F, oo F ®®F b F+F| **x F oe FV|

— in force balances E-10"* E=10" F=10"¢
109;—A 1L | I |

— in flow properties (length scales,

¢ B N
heat transfer, and waves) 'y %

Q
A
-2 du,/0z |V X (jxB)|,
. 2
- h %
> b =
e =
-~ -~

at Pm/Pr =18, E = 3*104, Ra/Ra, = 1.7
on a SF branch A ~ 1.1 (Dormy 2016) at E =10%, Pm/Pr=0.5, A < 4 (Yadav et al. 2016)



After all: hunt for magnetostrophic dynamos

* Convection-driven spherical dynamos

finding (the way to) the Earth/planet-like models
(e.g. Yadav et al. 2016; Dormy 2016; Schaeffer et al. 2017)

—A E=10""

— in force balances ol m -1l
—k— E=10"°
— in flow properties (length scales,
Nudyn
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After all: hunt for magnetostrophic dynamos

Convection-driven spherical dynamos

finding (the way to) the Earth/planet-like models

(e.g. Yadav et al. 2016; Dormy 2016; Schaeffer et al. 2017)
— in force balances

— in flow properties (length scales,
heat transfer, and waves)

— in scaling properties (e.g. Aubert et al. 2017)
* more like the one by Davidson (2013)?

— reversals also possible (Jones & Tsang 2025)

The proven importance enables us to
adopt the approximated approaches too?
— e.g. taking the limit (Jackson et al.)

Table 1 Proposed scaling laws

(after Christensen 2010)

# Rule Author
1 BIDR;’7 x (pQRg)“ e.g. Russell (1978)
2 B? o pQ*R? Busse (1976)
3 B2 x ,0520_1 Stevenson (1979)
4 B2 x ,oquca Stevenson (1984)
5 B2 x ,OQRS/?)C[C] /3 Curtis and Ness (1986, modified)
6 B2 o« pQ3/2 R0 1/2 Mizutani et al. (1992)
7 B2 & pQ%R, Sano (1993)
8 B2 x le/2R§/2qC] /2 Starchenko and Jones (2002)
9 B2 x pR?/ 3q62 /3 Christensen and Aubert (2006)
s = Rm2 R,
CIA balance?
+10 B? x p® R2° q.%3 Davidson (2013)

given B=B(l,qc)
MAC balance



Summary

Magneto-strophic regimes were long speculated for
planetary interiors/dynamos

— where MAC forces will play a predominant role  (cf. geo-strophic)

The regime may be signified by
— convection & its driven dynamos (subcritical/strong-field)
— larger length scales (cf. the rotating conv/weak-field)

— slower waves/oscillations

Now proving the existence and its branches

— suggesting Earth/planet-like models dynamically become possible

Relevant GAFD implications include

— scaling laws, termination of dynamos, magnetic secular variations
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Rossby waves

A fundamental class of waves in the rotating dynamics

@ arising from vortex tube stretching/shrinking

@ the simplest dispersion relation: wr =

Nonlinear Rossby waves may reveal coherent

structures:

@ soliton, cnoidal waves

o QG PV equation with shear flows and/or
topography [Redekopp(1977), Malanotte-

Rizzoli(1982)]

e equatorial shallow-water eq [Boyd(1980)]
@ envelope soliton [Yamagata(1980), Boyd(1983)]
@ modon, rider [Flierl et al.(1980)]
Theories were applied to Jupiter's GRS, etc.

e

UNIMONTANE SOLITON
KORTEWEG -DE VRIES EQUATION

ENVELOPE SOLITON
NONLINEAR SCHRODINGER EQUATION

Rl /U}f?“ ‘

Envelope ———

[Boyd(1980)]



Magnetic Rossby waves

The presence of magnetic field may split it into

2 o
@ fast modes ~ + wk (1 + Z—é\)
R L

@ slow modes ~ _wa _ _ (Bok)?IkP?
WR pioBk

e in a magnetostrophic/MC balance

e sensitive to the toroidal field

e preferred for spherical convection at
large Pm and moderate Pr [Malkus(1967)]

Their potential geo/astro-physical applications to
@ slow modes in Earth’s fluid core: slow [Hide(1966), Hori et al.(2015)]

@ fast modes in a thin stratified layer at the top of the core
[Braginsky(1967), Chulliat et al.(2015)]

@ fast modes in solar tachocline [Zaqarashvili et al.(2010), Mclntosh et al.(2017)]

Linear theory is under debate [Marquez-Artavia et al.(2017)].



Can nonlinear MR waves shape coherent structures?

@ isolated, sharp crests seen in spherical dynamo simulations

@ solitary waves in equatorial, shallow-water MHD [London(2017)]

e no mean flow U, B ~ tanhy, a basic field B ~ tanhy
e fast modes for weak field: cf. [Boyd(1980)]
e 'a slow magnetostrophic’ mode for strong field

@ slow modes in QG MHD/MC models [Hori et al.(2020)]

e to test the role of shear flow U, topography 3, and magnetic field B
e no stable stratification

@ modons in shallow-water MHD [Lahaye & Zeitlin(2022)]

At s = 0.5 r, t =0.00500

1500
1000 £

5R5 at s/r, = 0.50 with Vs(m= 5)

0.010 1.5E403 =
\ | R 07 ~/2 ™ 3n/2 ;Tv
0.008 h \ | 9.9E+02
N | B
[ \ | 4 9F 102 oo t =0.00450 ]
0.006 | . N 1000 £ E
= 4 500 £ E
+ i 0.0E+00 0F E
- - | —500 £ =
0.004 . —1000= 3
L 1 —4 96402 0 ~/2 ™ 3r/2 2
NS N _
0.002 \ \ . 9 9FE+02 o t =0.00400
- \ . o 1000
0.000 EENSTNN % L T L —1.56+03 o
0 /2 Tt 3 /2 277 1360
0 /2 ™

[Hori, Teed & Jones (2018)]



Busse's QG annulus model

A cartesian model useful to analyse the rapidly
rotating dynamics in a sphere [Busse(1970)].
Here the geometry is represented by sloping
top/bottom boundaries with a small angle .
With the rotation axis {2z, we suppose

Uz |, |2y | > |z

In the MHD [Busse(1976), Abdulrahman et al.(2000)]

we begin with equations for the axial vorticity, adapted from [Jones(2015)]
¢, =%2-(V xu), and the axial electric current,

J. =% (;-V x B):

5 +u - VE, — 20 5, = pB-VJZ, (1)
88_? = V x(ux B) (2)

with V-« = V- B = 0. Boundary conditions are u, = tu,x at z = i%
and uy, =0aty=0,D.



Streamfunctions and scaling

Using a streamfunction we can write u ~ V x ¢(x,y)2. Further, we assume
the magnetic field where |B, |, |B,| > |B.|, and represent B ~ V X g(z,y)Z.
The vorticity and the current are given by £, = —Asy and J, = —tAgg,

respectively, with Ay = 8‘9—; + 59—;2.

Now we nondimensionalise variables as

- .Yy o~ t ~ (& ~ g - x/L
T=1 Y=g N (8 D’ 1T BD ™ XTI
2 2
where cyr = 2—2 = 49%’0&’02’%0. This gives us the dimensionless equations
J~ ~ 8(77/57 82?7;) Cr ~8J Cr a(ga £2§)
Ot 2 0y, x) CMRX8x cur 0(Y, ) (3)
0. _ 9G¥
—= — — 4
i’ = 9. @

. A N 02 23_2 .
with 0 = & and Ag = 5= +0 ek Hereafter we drop all tildes.



Magnetostrophic regime

2
Of interest is the regime when C‘;A—RR = 2—5 > 1. Then the vorticity equation
A

(3) becomes

_X% - 9(y,x) (5)

I.e. the magnetostrophic or MC balance. The slow wave motion at this
regime arises from the time-derivative term of the current equation.

(The linearlised equations for the uniform basic state allow solutions of the

form elkz=“t) ginnry, i.e. w— Uk = —%Qk(kQ + n?m?). )

Two nonlinear terms in the governing equations: B -V.J, and u x B. No
roles of the advective term pu - V&, in the vorticity equation.



Gardner-Morikawa transformation

To seek its solitary solutions for a long wave, we introduce new variables
with a small parameter € (< 1):

C=e?(z—ct), T =2 (6)
where c is a constant (to be determined). Also suppose § = O(1).

The vorticity and induction equations are rewritten as

oY dg 0O dg 0O 02 02 ;
“Xac (ay a¢ — a¢ ay) (6842 " ay?) J (7)

o9 0\ (890 9g0
(_Ca_c " 6_) 7= (3y ¢ I 0y) v (8)

with boundary conditions aw = 0 at y=0,1.



Asymptotics: reductive perturbation method |

We now expand the dependent variables with € as

¢:¢O(y)+€¢l(<-7ya7-)+°' 9 g:.QO(y)_l_egl(CayaT)_l_ ) (9)

provided the basic state:

77 d%A

dgo 5
U =
dy

=Ulec,  B=-ec=DBlyec. (10)

At O(1) the vorticity and induction equations, (7)-(8), are both trivial.
The vorticity equation (7) at O(e) gives

8¢1 (92 —// 8g1
RS (B— -7 ) ES "

0y?
and so does the induction equation (8)

N
(T - c)a%} - (;? . (12)



Asymptotics: reductive perturbation method Il

Combining the two, we obtain a homogeneous PDE about ¢:
— (92 —// 891
@-a+3 (B )] 3 =0 1)

where ' stands for the ordinary derivative dy Boundary conditions are

dg1 __ _
a_gg =0 at y=0,1.

We assume solutions in the form of g1 = G((, 7)¢p(y) where ¢ should be a

solution to the second order ODE:

2

[B (Bd— —E”) +(U—c)] ¢ =0 (14)
dy?

with ¢ =0 at y = 0,1. An eigenvalue problem about ¢ and ¢.

. —2
It becomes singular wherever B~ /x has zeros. By contrast, the
nonmagnetic case leads to a critical layer where ¢ — U [Redekopp(1977)].

We focus on nonsingular solutions, i.e. discontinuous spectra.



At O(e?)

Now proceed to the next order to determine the amplitude function ¢(y).
The vorticity and induction equations (7)-(8) at O(e?) are

2 3 2
e (5 )l g (0 dn 0y e

o¢ Oy? o¢ o¢s Oy 0¢  0¢ 0y /) Oy?
09 091 _ 02 (0910 091 D
U=9%¢ *ar = B%¢ (ay 5¢ o ay) v (10)

After some algebra, they end up an inhomogeneous PDE for g-:

E <§d—2 -B')+ (-0 %2

X \ dy? O
G (B oG
- o (ﬂ)aﬂﬁ (17)
oG [2B B\’ 5"\
G S/ ny o [ = 2
5 | (69" =09 - 09 (X)+¢(X>

with 282 = 0 at y = 0, 1.




Solvability condition at O(€?)

When ¢ = 0 at the boundaries, the LHS /homogeneous part of (17) has
the solutions same as at O(e). So the solvability condition to suppress
secular terms in the RHS /forcing part is given by

»G (. (B oG [t .
o <X¢>dy+37/0 5t ¢ dy

., N (18)
2B 1/ 111 1/ B B
+G—/ o |22 o =0 -0 (D) + () dy =0
X X
where ¢! denotes the adjoint eigenfunction.
The result (18) shows a Korteweg-de Vries equation,
(‘9G oG 0°G
67- + « G8—< Y a—C?’ — O, (].9)

if o and v are both nonzero. Well-known solutions are solitary and cnoidal.



Some remarks

@ The presence of U only impacts the dispersive term explicitly
(unlike nonmagnetic cases). Note the profile of U may impact
the eigenfunction ¢ and thus the nonlinear term.

o If B and x are both independent of y, (18) is reduced to

ZZSB / ¢T¢dy+—/ oF ¢ dy

oG 2B
G—Q— / o (" — d ")y = 0.

(20)

The nonlinear term vanishes for a harmonic function satisfying
¢" = C¢ with C being constant. This is the case when U is also
uniform. A variable basic field or topography or flow is crucial here.



cf. Nonmagnetic case

In the absence of magnetic field, the same methodology implies the
O(e)-structural equation for 1 = ¢(y)F((, 7):

T -0)2 L — (x+T")p=0. (21)
A critical level will arise when ¢ — U. Otherwise, wavy solutions available

when (x +ﬁ”)/(c —U) > 0 (turning level). For the uniform basic state, the
speed returns ¢ — U = %, i.e. the long Rossby wave.

The solvability condition at O(e?) is then given by

o [ e-mar-2E oty -0 [ 906"~ o9y =0.
(22)

Recall that the nonlinear term vanishes if U and y are both uniform.



Spherical QG MHD model

We adopt a quasi-geostrophic model in cylinder (s, ¢, z), where the
spherical geometry is taken into account [Jones(2015), Canet et al.(2014)].

In the magnetostrophic regime where

Le ~ |wa /we| < 1, we begin with equations
for the axial vorticity, £, = 2 - (V x u), and
the magnetic field, B:

O, 1 .
_ — = . - 2
2077 = BV (23)
0B

and V-u =V - B = 0. Boundary conditions are

Uy = IF’LLS% at z=4+H = :I:(?“f — 82)1/2 (25)

us =0 at s=ri,7o (26)

IQ
ZI
/‘\
\/ »
e
. I
77777777777777777777777777777 |
I
12H
ri ' o j (0}
| >
| - -—
o | B U
1 ) |
N BN oy
,,,,,,,,,,,,,,,,,,,, . H
L e
v

The former gives rise to the topographic beta effect g = —ZQd% In H.

Assume u ~ V x ¢(s,0)z and B ~ V x g(s,p)Zz.



Reductive perturbation method

Hereafter all dimensionless: the length and the velocity are scaled by the
radius of the outer shell, r,, and the MC speed, B3 /(2Qr.ppo), respectively.

To seek its solitary solutions for a long wave, we introduce slow variables
with a small parameter € (< 1):

=2t C=e2(p—ct) (27)
where ¢ is a constant. We now expand the dependent variables with € as

¢:¢0(5)‘|‘€¢1(C7877)‘|‘-- ) g:go(s)+€gl(C7svT)+" (28)
provided the basic flow and magnetic field are purely azimuthal:

—Dio =U(s), —Dgo= B(s) (29)

where D = d/ds.



At O(e): eigenvalue problem

Egs. (23)-(24) at O(e) give a homogeneous PDE about g

99 _ {2 {FDQ - D%D(SF)} + (g — c>} %—% =0 (30)

where the linear operator £ = L(s,0/9s, B, 3,U,c). Boundary conditions
are 9g1/0( =0 at s =17 and 1.

Seek solutions in form of g; = ®(s)G((, ) to leave the eigenvalue problem
LP =0 and =0 at s=mn,1. (31)

. . . —2

I.e. a second-order ODE. A critical level will arise wherever B” /3 has
zeros, but not as ¢ — U/s; cf. nonmagnetic cases. Again, seek
nonsingular solutions only.



At O(e*): KdV equation?

We proceed to the next order to determine the amplitude function.
After some algebra, we obtain an inhomogeneous PDE for gs:

dg: B &G 9G

£a< ——836(%3(1)——67(1) (32)
oG (2B 5 5 ®D?’®d® B d° 1 1. —
i) — — — + _DZD-=
+G3C{58 [(D )D*® DD <I>} - D5+ SDﬁDSDsB}

where D? = (1/s)DsD. Boundary conditions are 9g,/9¢ = 0 at s =n and 1.
The solvability condition is given by

2

1 3 1 E
oG cpTcpsder%/ PT —d ds (33)
or Jn o¢s Jy s23
, _ _
+ G9C [ g1] 2B [®DD?*® — (D®)D?*®] + cI>(D2c1>)DE _o2piplipsBlas=o
o¢ Jy p B B s

with ®T being the adjoint eigenfunction. Again, this implies a Korteweg-de
Vries equation if the coefficients are both nonzero.



Case study

We investigate the two coefficients for different basic states, provided
B=s/(1-s°) and n = 0.35.

Solutions to the eigenvalue problem (31) at O(¢) are found analytically in
a couple of cases. For general cases we solve this using the Matlab routine
bvp4c with a modified boundary condition ® + (1 — s)D® =0 at

s = 0.99999.

In the all cases we obtain nonzero « and ~, i.e. valid KdV equations.
B U
S 0

c o" ¥

n
1 -9.7847  -12.854 0.87465
2 -33.2045 -14.639 1.0480
3 -70.0655  -26.422 1.1156
1/s 0 1 -21.9795 -36.930 1.2464
2
3
1
1
1

-78.0389 -31.920 2.1442

-167.788 -70.056 2.8417

S -8.7847  -12.854 0.87465

°1/s S -20.9795 -36.865 1.2464

°s 4s5(1 — s) -8.8379 -9.5075  0.90339

°1/s 4s(1—s) 1 -21.4523  -35.429 1.2659
© Cases evaluated with the routine bvp4c .

°s




An asymptotic solution: single-soliton

The known solutions to KdV equation are solitary, cnoidal, similarity, and
rational [Drazin & Johnson(1989)].

The 1-soliton (solitary wave) solution yields our asymptotic solution, such
that

— [ Tds— esentay) (2o - 2plp(sB 2
P(s,p,t) = /?7 Uds — € sgn(ary) (BD o BDSD(SB)) sech®F  (34)
where

Fio.) =/ |1 |26 e - s 5 (o9




Case 1: for Malkus field

Here is the example for B = s (Malkus field; red in figure a). Let x = 1 — s?;
the eigenvalue problem (31) at O(e) is rewritten as

d2 d . h )\2_ C

Found to be a hypergeometric equation (A&S Chap. 15) So with the

hypergeometric function F(a,b;c;2) = >, (“)(c)(:)” Z, , we find solutions

d=(1-s)F(1+A1-X2;1—5% (37)

(black dashed) and ®" = = (black dashed-dotted). This gives a ~ —12.9
and v = 0.875 for n = 1 . e a clockwise eddy (figure b).
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Case 2: for wire field
When B = 1/s (electrical-wire field; red in a), the ODE (31) is reduced to

d? d 2 2
x(l—x)@—x%—i—)\(l—x) ®=0, (38)

which has a solution
D = (1—52)eM ™) He(ge, e, Ve, Oey €3 1 — 5°) (39)

where H,. represents the confluent Heun function (DLMF Chap. 31) with
Qe = A2+ 2\ —1, ac = A2 +3)\,v. = 2,5, = 1 and ¢, = 2 (black in a).
Also ®f = =&, Now we find v ~ —36.9 and v ~ 1.25 for n = 1. The
solitary wave solution is again clockwise but more compact (b).
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Case 3: influence of basic zonal flow

Valid KdV equations are found in the presence of a basic zonal flow. A
linear shear, U = s, simply implies the solid body rotation; a quadratic
shear, U = 4s(1 — s), weakens the nonlinear effect.

Are the solutions really right even when ¢ — U/s ? This is confirmed: we
impose an extremely fast flow, U = 80s(1 — s), to have such a radius at

which U/s — ¢ = 0 (dotted blue in a), however there are no discontinuities
in the vicinity (b and c).
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Looks like the anticyclonic gyre in Earth's core?

The solitary wave solutions supports the persistency of an isolated
yrs).

anticyclone, drifting westwardly on timescales of O (104

COV-0BS QG core flow model: geodynamo DNS:
average over 1840-1990 average over 0.0167, ~ 10° yrs (or less)
[Pais et al.(2015)] low-frequency, columnar

accelerating? [Barrois et al.(2018)] [Schaeffer et al.(2017)]



Summary and some remarks |

The weakly nonlinear analysis in the QG MHD/MC model indicates
slow MR waves may shape coherent structures, such as solitons

@ the Busse annulus model illustrates this happens when either the
basic magnetic field, topography, or mean flow varies in s

@ this is exemplified by the spherical analogue

@ the single soliton (solitary wave) solution yields an isolated,
anticyclonic eddy

@ it is nonsingular even when the wave speed approaches the basic
angular velocity

Potential geo-/astro-physical implications:

@ the eccentric gyre in Earth’s core [Pais & Jault(2008)], and then the
South Atlantic Anomaly?

@ the nest of convection?

@ a single vortex in protoplanetary discs?, Jupiter's GBS??



Summary and some remarks |

Note that
@ the long waves can be destabilised through any scenarios, e.g.

o differentially rotating flows [Schmitt et al.(2008), Nornberg et al.(2010)]
@ convection [Sakuraba(2002), Hori et al.(2012)]
e magnetic diffusivity [Roberts & Loper(1979), Zhang et al.(2003)]

o different basic states (directions/morphologies) will lead to different
characteristics

Open questions:

@ at strongly nonlinear regimes: envelop soliton, modon, etc.
@ DNS/initial value problems

@ when there is an internal singularity in §2/5 profile

@ in 3d spherical systems where the z-dependence is present

@ solutions to (cylindrical) KdV equations
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Torsional oscillations/waves

A special class of Alfvén waves (Braginsky 1970; details in the note) :

— The azimuthal momentum equation integrated over
cylindrical surfaces C = 27nts h(s) about the rotation axis:

;/pu¢d5+/e¢ (V- ,ouu)dS—|—2Q/pu5dS /ng (J x B)dS

— For incompressible fluids, the Coriolis term vanishes
— The magnetostrophic balance yields a steady state (Taylor 1963)

— Cylindrical perturbations on the state, (u's) = (u'4)(s,t),
can be governed by a homogeneous equation:

O (uy) 1 g( h<>U23D>

ot? s s3h(p) Os Ads s

«  with Alfvén speed U, = (<B,2>/p<p>)*2

* outward (+s) and/or inward (-s) propagation,
or standing waves, possible

Can be excited by any mechanisms/instabilities
(after Roberts & Aurnou 2012)



TO as an eigenmode

Mode classification
(Gerick+ GJI 2020)

e Early studies explored the eigenvalue
. 4 | fast oc Le™* 6
problem of the 1d wave equation . .
102 | 103
:
3 10°4 TM o const. 100 3
. . = 7 lssssessssssssessssssss: £
* Normal mode solutions to the governing M d
(full) equations reveal the TO class L 100
"""" slow o< Le
106 T 107°
10° 1073 1071
Le
S2, B, S2,B, o
u, Uy Hy
1.0 0.00003 0.0008 3
0.0006
038 0.00002 0.0004 2
06 | 0.00001 0.0002 1
0 0 0
041 ~0.00001 ~0.0002 Y =
-0.0004
S 02 04 05 03 10 0.2 :g:ggggi -0.0006 ‘ i
0 : \ - & _0.0008 . =
03 . 0 05 1.0 0 05 1.0 0 05 10
0atr” T‘:?"'_’L\'\:\ o ]SE:nh—likc 1.0 - b b b
3 N 0.0006 0.002 02
I \'\I"\a._. 0.8 0.0004
K % . 0,000 0.001 0.1
Z AN 0 0 0
02 RN 0.4 ~0.0002
\.2.\.“ 02 ] - 0.0004 \ -0.001 \ -0.1
o RN ~0.0006 A 0002 -02
. R 0 | EEE—— | N
— 0 0.5 1.0 0 0.5 1.0 0 0.5 1.0
’ 05 06 07 08 09 10 Figure 4. Fundamental torsional normal modes for (a) S1and (b) S2. They are computed at Le =10~*, [u = 2 x 10*atN =

175, L = 350. The non-azimuthal flow components are small, as expected, compared to the azimuthal component (see also
figure 11). (a) Components of the fundamental torsional mode for STwith o = 0.0136 and «» = 0.667. (b) Components of the
fundamental torsional mode for S2 with & = 0.0066 and v = 1.034. (Online version in colour.)

TO for a given poloidal field :
(Liu & Jackson, Proc. R. Soc. A 2022)



Torsional waves in Earth’s fluid core

Axisymmetric zonal velocity u'y,

Some histo ry.. in a core flow (gufm; Gillet et al. 2010)
» Proposed to account for ~60 yr geomag 3 (@ “V/Jf |
SV and/or the core flow (e.g. Braginsky 1970; & v S i
Zatman & Bloxham 1997) = 06
— in terms of normal mode solutions, i.e. C_E; o
standing form é
— to infer the field strength of <B;2>%2> 0.3 mT :E), .
* too weak? (e.g. scaling laws; Christensen & [ T T TR T T

Aubert 2006) Year

* for another signal of 4-9 years (Gillet et al)
— implying the strength of <B,2>2> 2 mT

— in core flow models inverted from geomag SV E
* compatible with ~6yr variation in the %
rotation rate (length-of-day) variations too o’
* strong filter; unclear geomag signals
— more likely travelling to the equator L | | | | |
04 05 06 07 08 09 1

Cylindrical radius



Torsional waves in Earth’s fluid core

Axisymmetric zonal velocity u'y,

Some histo ry.. in a core flow (gufm; Gillet et al. 2010)
! 1 7 7 (T T
* Proposed to account for ¥60 yr geomag 3
— 08
SV and/or the core flow (e.g. Braginsky 1970; o
Zatman & Bloxham 1997) = 06|
(]
— in terms of normal mode solutions, i.e. = o4 A
standing form £ e
~ C I
— toinfer the field strength of <B;2>1/2> 0.3 mT :;), . @j \
* too weak? (e.g. scaling laws; Christensen & e e
Aubert 2006) Year
* foranother signal of 4-9 years (Gilletetal) (cov-obs; Gillet et al. 2015)
— implying the strength of <B,2>2> 2 mT S 19 cmB I 03
. . 0 A 0.2
— in core flow models inverted from geomag SV 4 4|
S5 Y 0.1
* compatible with ~6yr variation in the 9 .
rotation rate (length-of-day) variations too (—: 0 6-‘ i .’ '\ g
» strong filter; unclear geomag signals é _0'2
C ‘ .
— more likely travelling to the equator < %4l icB 03
O 1920 1960 1980 2000

Year



Revisiting geomagnetic data

Period
(@) 6|0 |30 10yrs 6 1_\trr5 .
!/ !/
* DMD over [ug’, dbs'/0t] revealed o [ T,
. T 10 o | ]
— ~6 yr signals comprising of tiny B o @ i
but wavy (high Q) components o .o e
~ 2 ] O
* fit with CFF field B. of <3.9 mT T 10°! O | |
S o o !
= o 0 ol d
! !
— their reconstruction reproduces the TO odells ©
nature reported in u,, while visualising the 107 . D |
magnetic SV of magnitude < 1% 2 0.1 0=
Frequency |Im A|/21 (yr)
rocky mantle () 60 30 10yrs 6yrs
1 [I—I:t Tl T T T T .—I—l—F 0.2 '|:: 0-5 i l l ‘ T1 | T2
. m}‘ [ [
o/ fluid core . b i i
£ o8l | Y 0.1 = | |
5 T ok rmode 2 |
o £ o) ® O |
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06 I I 1l - —° £ mode 1 |
% 0.5 i -0.1 {_—j : :
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0.4 I I [f I . E ! i
- : - - A -0.2 (5 -05¢ @ . !
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KH, Nilsson & Tobias, RMPP 2023)



Revisiting geomagnetic data

Period
(@) 6|0 |30 10yrs 6 \_Trrs .
!/ !/
* DMD over [ug’, dbs'/0t] revealed o [ T,
. S 10} o : .
— ~6 yr signals comprising of tiny = o @ i
but wavy (high Q) components o oD e
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— their reconstruction reproduces the TO odells ©
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Torsional waves in DNS

in state-of-the-art dynamo simulations
(Schaeffer et al. 2017)

B |

 Geodynamo/magnetoconvection

. . . . . 1.4F
simulations support its excitation 12 &8
& travelling nature (e.g. Wicht & Christensen 10§
2010; Teed et al. 2014; Schaeffer et al. 2017) 822 ‘

— no clear reflection, no standing 0.4

0.2

{ H H ’
oscillations
0.0 ENe——
* too strong dissipation around CMB?

e too viscous?

* dispersive in the spherical cavity? in magnetoconvection simulation
(no filters; Teed, Jones & Tobias, GJI 2019)

““““““““““““““““ 3 18

| CMB =

* Lab experiments also? (Nataf et al.)

o
(,4A w) psadg




Some more discussions

Excitation mechanisms

— normal modes to be damped at CMB

* in the presence of a conducting material

at the bottom of the rocky mantle
N 1-Q—-+Pm
1+Q++vPm

. 0
* with the conductance G = f—a Omdx,
conductivity ., , and thickness &

— resonately launced at depth, in the
vicinity of ICB
— (forced)

e areflection rate: P

The conditions

1.0

< o o
I o o
T T T

reflected energy |R|?

o
IN)

o
o

i 1 Il Il Il
107 107 10! 10° 10! 10?
Q

(Schaeffer & Jault 2016)
illet et al. 2017)

ForQ =G By(1p)2=0.02 (IVP; G

0.4 - 0.4 :

06 =

7]

0.8 ‘ %
1 M

0 0.5 1 15 2

ForQ=0.5
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In other planets? e.g. Jupiter

A prototype of gaseous planets
— has the strong, global magnetic field -

— generated in the metallic hydrogen region

* the “dynamo” region likely spans close to
the surface, <0.8-0.9 R,

Jup

* cf. in the Earth, < 0.55 Rgah

Br near Jupiter’s dynamo surface, ~0.85R;,,

(n<18; JRM33 in 2016-21)
 |ntheJuno era (2016-now):
— orbiting at closest levels to a planetary Latmosphere
dynamo 1 bar =" ool :
— pre: strong, predominantly axial dipole hydrogen ~0.96R;,,?
(n < 4), secular variation? g ~0.9R?
— post: localised patches incl. “GBS” 1-3 Mbar
(n > 30), first secular variation in other metallic
planets, etc. hydrogen

Jupiter’s interior model
(Stevenson 2020)

Br [mT]



Convection-driven dynamo models for Jupiter

Setup (Jones 2014; also Gastine et al. 2014):

Assumed reference state

— model the metallic region & the transition :
to the molecular region: 0.09R) < r < 0.96Ry
— dynamos driven by anelastic, rotating

convection (Lantz & Fan 1999; Braginsky & Roberts 1995)
— a reference state (French et al. 2012):

electrical conductivi

i olom %
0.01 3 % E
» density contrast, p(rcore)/P(Feutofr) ~ 18 - | metallic region transition |°
e electrical conductivity ¢ begins to drop 0.001 0‘1 0‘2 0‘3 0‘4 0‘5 0‘6 0‘7 0‘8 0‘;
at r ~ 0.85-0.90R| S
Fcore Radius r/RJ
Key outcomes:

rcutoff

Br at the cutoff radius r s ~ 0.96 R,
— jupiter-like magnetic fields reproduced

truncated uo to n=10 (after Jones 2014)




Convection-driven dynamo models for Jupiter

Setup (Jones 2014; also Gastine et al. 2014): 10

— model the metallic region & the transition
to the molecular region: 0.09R) < r < 0.96Ry
— dynamos driven by anelastic, rotating 01 L
convection (Lantz & Fan 1999; Braginsky & Roberts 1995) E
— a reference state (French et al. 2012):

electrical conductivi

Ly
i olon, o
0.01 © 3
 density contrast, p(rere)/p(reutost) ~ 18 - | metallic region transition o]
* electrical conductivity o begins to drop 0.001 Ol_1 01_2 0{3 0{4 01_5 Ol_6 01_7 01_8 Ol_;
at r ~ 0.85-0.90R Feore Radius r/RJ M outoff
* Key outcomes: Axisymmertric B¢ & U¢
l
— jupiter-like magnetic fields reproduced Q\ MTC
— a magnetic tangent cylinder formed

e attaching to a “top” of the metallic
region at the equator

* one jet outside the MTC; incoherent inside

— fluctuating: to be analyzed




Alfvén speed in the anelastic simulations

Predicted Alfvén speeds
U, = (<By2>/pp<p>)Y2:

— independent of wavenumbers, i.e. nondispersive

— higher for low p, i.e. increasing with s
— drops to the MTC

12007
1000

for the variable p

— — —
-— o~

800
o00

400

Alfvén speed Up

200

0.2 0.4 0.6
Cylindrical radius s/rgyiof

at E =1.5"10°, Pm=3, Pr=0.1, H=1.4

0.8




Torsional waves in Jovian simulations

Axisymmetric azimuthal velocity u’y,

* |dentified with the predicted speeds . 1697.6
of Uy = (<Bs?>/po<p>) /2 { I 1018.6
— travelling in s, outwardly or inwardly, : .
from an outer radius (0.6 < s/r s < 0.8) S
— faster than convective speed ==
-1018.6
* Reflected at ~ MTC
¥ -1697.6
— which acts as an interface to the e &
poorly-conducting zone . _ Fluctuating zzmean part (')
s | MTC [Z3 )‘4. ’
3 05l ] 2.1E+02
; | ™ 1Ev02
3 U°F ‘ 1L 0.0E400
S 0aF - M - 1.1E+02
2
= 02k v —2.1E+02
—3.2E402

0.0000 0.0005 0.0010 0.0015 0.0020
(KH, Teed & Jones, EPSL 2019) Dimensionless time



Evolution of torsional waves

e Reflection at ~ the MTC

— as well as transmission to the
outside

— reflected waves not identical
to incident waves

* due to its spherical geometries,
variable background fields,
nonlinearities, etc.

0.2 0.4 0.6 0.8 0

e o . . . |'

S

o Z8F .
©  T9%E i
_,3 ~100 :‘/_\_/\J\/i/\:
o | | | |

E

<

At t =0.00076 I

 Waveforms can become sharp

~388
. 0.2 0.4 0.6 0.8 TIO
— steepening; weak, unstable T {
: S . t =0.00092 I
e typical for inviscid nonlinear 300 F :
waves e \/\/\/é
—388E
* e.g. water waves, shock waves 0.2 0.4 0.6 0.8 Tw:o
. . . . I
» cf. dispersive, cnoidal/solitaty ¢ =0.00108 I
Rossby ones (Hori et al. 2017) 300 F :
7108 Mw
88 E '

Cylindrical radius s



Reflection of Alfvén waves

 Possibly due to the change in U, = (By%/pLig)Y/? (e.g. Alfvén & Falthammar 1963)

* More likely due to the drastic change in the electrical conductivity o,

or the magnetic diffusivity n = 1/u,0

— Consider a toy model: 1D incompressible
models for a wave (k, ®) approaching

a resistive layer

velocity uy or derivative of field db, /dx

-
o

(o]

t=0.00

e

|
ﬂf uniform B
| incoming Mave —

i by’(x) ~ ‘%Jri(k’lf'mt)
|

——t

n(x)

+
c#ynd[gctor resistive layer
|
|

0 2 4 6 8 10

X

(Yamamoto, BEng thesis 2019)



Reflection of Alfvén waves

 Possibly due to the change in U, = (By%/pLig)Y/? (e.g. Alfvén & Falthammar 1963)

* More likely due to the drastic change in the electrical conductivity o,

or the magnetic diffusivity n = 1/u,0

— Consider a toy model: 1D incompressible
models for a wave (k, ®) approaching

a resistive layer

10

(@)]

velocity uy or derivative of field db ,/dx
()

1
R]

t=0.00
-

£ .

I|+I uniform B
i EL —>
||

o

|1

|
ionépuctor resistive layer
|

I ¢
W

6 8 10
X

(Yamamoto, BEng thesis 2019)
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Reflection of Alfvén waves (cont’d)

1D incompressible models for a wave
(k, ®) approaching a resistive layer
— forajump, n =ny O(x - xp)

* the reflection coefficient when @ >> V,2/n,:

n ik — (1+1i)\/w/2n9

ik + (1 + i)\/(ﬂ/2770

* the skin depth (w/2n,)*/?
« if k?<<®/mng, |R| ~ 1, i.e. perfect reflection

— for a smooth change, n(x) = g exp A(x - xg)

 reflections when k< A, i.e. the wavelength
of the incoming wave is long compared to
the transition thickness

x [m]

x [m]

10

o N O~ OO

10

o N O~ OO

red- :analytical solution

Reflection coefficient R

107
magnetic diffusivity n,

-
0 560 1600 1500 )
t[s]
0 560 1600 15;00
t[s]
uy for ng=1

(after Yamamoto, BEng thesis 2019)

blue-:simulation result(Dirichlet boundar

green-:simulation result(Neumann boun

dary)

10

-10



Excitation in the dynamo simulations

Can be evaluated through the forcing
terms in the momentum equation:

_ L0 e e L0 sy 0 ()
— TW initiated by the Reynolds/Lorentz
force at an outer radius, 0.6 < s/r. ¢ < 0.8

— at which it is beated by convection on
timescales of Rossby waves

Note: distinct from the NatAstro scenario

z-mean radial
velocity <ug>

Reynolds term Fg

10 Y Y 7428 1.8E+06
MTCY*’ #!!7_T b Nl e e 1 2E4+06

U@R . N - )
o \\ o N | | 606405

&5 0.6F R
> " 0.0E4+00
0.4F 7 B —6.0E+05
0ok ] Iw.2E+O6
. : : ), PN ] —1.8E4+06

0.0000 0.0005 0.0010 0.0015 0.0020
{

forcing Lorentz term F ‘

1.0 1.6E+06
- _j-,_, L Ju I I W I v W N I I W I W N I | Ef w2E+06
0.8 n e
L N .:
i A ™ X 6.0C+05
06 - N 'O . J _
i .8 e 1 0.0E+00
I . L4 ]
0.4 \ . ~6.0E+05
0.2} e 7 —1.2E+06
e W | i J —1.8E+06

0.0000  0.0005 0.0010 0.0015 0.0020
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Torsional ‘oscillations’ possible

e Zonal flow fluctuations in another case
— standing inside the MTC

* travelling from an outer radius both inwardly and outwardly

* superposition with reflected waves enables standing waves
— only transmitted outside the MTC

e while being absorbed

= help to determine the location? Fluctuating, z-mean azimuthal velocity (')

] MTC mmmmmm = . , 1 0. 1402
— cf. Earth’s CMB 5 T v A v @ 5o \ e | 3 AF+02
+ the bound betweenthe & | /47 0 . 0™
core fluid and the rocky ® - // ’ 0 R
mantle (Schaeffer & S .67 1 00E+00
Jault 2016) (_; I U \ 1B
e 04F # 7 —1.7£+02
2 : |
'(—%, 02; 7 —5.4E4+02
’ LANT ., R ~5.1E4+02

0.000 0.001 0.002 0.003 0.004 0.005
(KH, Teed & Jones, EPSL 2019) Dimensionless time



Failed cases

e TW were not found if the background

magnetic field is less dipolar

— no longer in magnetostrophic balance
— MTC becomes smooth and deep

— cf. even for a dipolar field

when the geostrophy is lost
(Boussinesq; Teed et al. 2015)

revi8_Ra4e7fh_re2_:
Br atr=1.107

t=0.005000

1.269
-

£ 0.761
—— 0.254
—— -0.254

I -0.761
-1.269

Fluctuating, z-mean azimuthal velocity (u’)

Cylindrical radius s/rgs

0.2F

0.000 0.001 0.002 0.005 0.004

at E = 1.5*10-%, Pm=3, Pr = 0.1, higher Ra
(unpublished)

Dimensionless time

3. 1E+05
2.1E+05

1.0E+0%

—2.4E-04

—1.0E+03

—2. 18403
—5.1E+03



TO in Jupiter?

Br around GBS & residuals from steady flow

TO may give rise to (Juno MAG; Bloxham et al. 2024)
* magnetic secular variations b S ST S
— thought of magnitude O(0.1 mT/yr) but f 2 f\\ \\ 55 &
unclear signals in simulations/Earth.. (ﬁﬂ\§sg s
— now some indication by Juno? E ) ) é
* in the inferred flow of period ~4 years & B \J —
magnitude < 0.9 cm/s (Bloxham et al 2024) S |y ¢ i1
. . . $ SIS 5 - 'E
e variations in length-of-day West Longtude ( v
_ . . -2
potentially of magnitude < O(107 s) U’y Imax(U,) at ~0.96 Ry,
* ~the accuracy of the System Il (1965) (after Jones 2014; KH et al. 2019)
rotation rate, relying on radio emission 1.0 ‘ 0.106
~ gé 0.071
* variations in the atmosphere 2 0.035
2 0.6
— unlike the rocky Earth! 2 6 , 0.000
— potentially by < 10% of mean flows S 4 \ TRE —0.090
— more data of the appearance 0.2 | ] —Ues
wwwwwwwww\wwwwwwwww\wwwwwwwww\wwwwwwwww\wwwwwwwww: 70./‘06

0 88 176 264 352 441
Time tJ [yrs]



TO may give rise to

* magnetic secular variations

— thought of magnitude O(0.1 mT/yr) but
unclear signals in simulations/Earth..
— now some indication by Juno?

* inthe inferred flow of period ~4 years &
magnitude < 0.9 cm/s (Bloxham et al 2024)

TO in Jupiter?

e variations in length-of-day
— potentially of magnitude < O(102 s)

Images at ~5um wavelength
(Antunano, Fletcher, et al. 2019)

2011-12-31

2001-05-02

~5um brightness anomaly (100-day mean)
vs. estimated TO speed

* ~the accuracy of the System Il (1965) \ 39N
rotation rate, relying on radio emission 08+ | ) NNTZ| o
3 . / / INNTB
st . g o085 ) )'/ s & N
e variations in the atmosphere 5 L . Leen
~ 0.9 S~ //"'/‘.““ U NTB
. ) ~ // ot
— unlike the rocky Earth! B \ JE Lyren
. 0951 ¢ a 4 ) NTrZ
— potentially by < 10% of mean flows L nes 15N
D oa—.. T -6.7°N

— more data of the appearance (ground-base) 20
* TO signals in infrared/~5um images?

05 2007 2009 2011 2013 2015 2017
Year

0.05

0

-0.05

(KH, Jones, Antuiiano, Fletcher, Tobias 2023)



Possibly in exoplanets? stars?

With no convective drivings

* Tidally-driven flows (Astoul & Barker,
in review/arXiv)

— magneto-inertial waves play a
central role

e MRI-driven?
— where a basic zonal flow shear acts
as a Coriolis effect

— slow eigenmodes in solar near-
surface region? (Vasil et al. 2024)
* proposed to drive the solar cycle as

well as the solar ‘torsional
oscillation’ there

* |ooks like our TW/O
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Figure 9. Amplitude of the fluctuating z and ¢ averaged zonal flow (uy )z o — (Uyp)z,e,¢ VErsus time ¢ a
exhibiting propagating torsional Alfvén waves. The time average for the zonal flow (uy )z, ,.¢ is perfor
where the oscillations are observed. The green curve shows the Alfvén timescale 74 (averaged over an apr
Le = 6-1073. Middle: Le = 10~2. Right: Le =2 - 1072.

P = 1,835 days

t, =601 days

Fig.2|Two meridional (r, 8) MRI eigenmode profiles. Longitudinal angular
velocity perturbation, Q’(r, 0) = uy(r,0)/(rsin(0)); momentum-density
streamfunction (¢-directed component; Methods), ¢(r, 6); longitudinal
magneticfield, b,(r, 6); magnetic scalar potential, a,(r, 6); and current helicity
correlation, H(r, 8). The timescales t. and Prepresent the instability e-folding



Summary

Torsional Alfvén waves may well be excited in Earth and Jupiter

 propagating in cylindrical radius with Alfvén speeds ~ Bs/p'/2
— on timescales of O(10%1 yrs)
 demonstrated in geo-/Jovian dynamo simulations

— when the field is predominantly dipolar

— preferably propagating in geo- ; possibly standing in jovian
* by reflections at an interface, MTC, for a sharp transition in conductivity

e giving rise to LoD variations and, in the gas giant, zonal flow
changes in the overlying layer
— unclear signals in magnetic SV

 The detection in the planets: maybe? likely? (on-going)

— a potential window to infer the interior of the dynamos



