FTPACK 使用の手引 (version 1.0)

石岡 圭一 (2000/09/19)

1 概要

これは、高速フーリエ変換を行なうサブルーチンパッケージである。データアクセスをできるだけ連続的にすることにより、ベクトル計算機上での高速化をはかっているが、通常の計算機上で使用しても十分高速である(ただし、通常の計算機の CPU およびキャッシュの性質を十分考慮して最適化された FFT ルーチン、例えば FFTW (http://www.fftw.org/) にはさすがにかなわないので、そのような計算機で FFT を実行する必要があり、かつ実行時間の削減が重要である場合には、そのような最適化された FFT ルーチンの使用を薦める)。なお、変換の基底は 2,3,4,5 であるので、これらの素因数の積で表されるデータ長の変換に限られる.

以下のサブルーチン群の中で初期化をおこなうサブルーチン (サブルーチン名が I で終わる) は、そのサブルーチン群に属する変換ルーチンを用いる際、かならず最初に 1 回呼ばなければならない. ただしそれ以後は、異なるデータ数を指定するときに限って初期化ルーチンを呼べばよい. なお、初期化ルーチンが用いる作業領域は、同じサブルーチン群に属する変換ルーチンを用いている間変更してはならない. (この作業領域には、因数と三角関数表が格納されている).

また、ベクトル化の効率を上げるために、同じ項数の時系列データを複数個同時にフーリエ変換する仕様になっている。つまり、2 次元配列 X(I,J), $I=1,2,\cdots,M$, $J=1,2,\cdots,N$ が与えられた場合、各 I について、X(I,1),X(I,2), \cdots ,X(I,N) に対するフーリエ変換を行なう。すなわち、この場合 N 項のフーリエ変換を M 回繰り返すことになる。時系列データが M 種類だけの場合は M=1 とすればよい。

2 サブルーチンのリスト

離散型原始複素フーリエ変換

FTTZLI(N,IT,T)	初期化をおこなう.
<pre>FTTZLM(M,N,X,Y,IT,T)</pre>	変換をおこなう.
離散型複素フーリエ変換	
	初地ルナヤーから

FTTZUI(N,IT,T)	初期化をおこなう.
<pre>FTTZUF(M,N,X,Y,IT,T)</pre>	正変換をおこなう.
FTTZUB(M,N,X,Y,IT,T)	逆変換をおこなう.

離散型実フーリエ変換

FTTRUI(N,IT,T)	初期化をおこなう.
<pre>FTTRUF(M,N,X,Y,IT,T)</pre>	正変換をおこなう.
FTTRUB(M,N,X,Y,IT,T)	逆変換をおこなう.

離散型 cosine 変換 (台形公式)

FTTCTI(N,IT,T)	初期化をおこなう.
FTTCTF(M,N,X,Y,IT,T)	正変換をおこなう。
FTTCTB(M.N.X.Y.IT.T)	逆変換をおこなう.

離散型 sine 変換 (台形公式)

FTTSTI(N,IT,T)	初期化をおこなう.
FTTSTF(M,N,X,Y,IT,T)	正変換をおこなう.
FTTSTB(M,N,X,Y,IT,T)	逆変換をおこなう.

離散型 cosine 変換 (中点公式)

FTTCMI(N,IT,T)	初期化をおこなう.
FTTCMF(M,N,X,Y,IT,T)	正変換をおこなう.
FTTCMR(M N X V TT T)	逆変換をおこなう

離散型 sine 変換 (中点公式)

FTTSMI(N,IT,T)	初期化をおこなう.
FTTSMF(M,N,X,Y,IT,T)	正変換をおこなう.
FTTSMB(M,N,X,Y,IT,T)	逆変換をおこなう.

3 サブルーチンの説明

3.1 FTTZLI/FTTZLM

1. 機能

1 次元 (項数 N) の複素時系列データ $\{\alpha_k\}$ が M 個与えられたとき、離散型原始複素フーリエ変換を FFT により行なう。ただし、N は $N=2^a3^b5^c(a,b,c:0$ または自然数) であること。FTTZLI は初期化を行う;FTTZLM はフーリエ変換を行う。

2. 定義

● 原始複素フーリエ変換

 $\{\alpha_k\}$ を入力し、次の変換を行ない、 $\{x_j\}$ を求める.

$$x_j = \sum_{k=0}^{N-1} \alpha_k \exp(2\pi i \frac{jk}{N}), \quad j = 0, 1, \dots, N-1$$

3. 呼び出し方法

FTTZLI(N,IT,T)
FTTZLM(M,N,X,Y,IT,T)

4. パラメーターの説明

- M (I) 入力. 同時に変換する時系列の個数 M
- N (I) 入力. 変換の項数 N
- X (D) 入力. $\{\alpha_k\}$ 出力. $\{x_j\}$ 大きさ M×N×2 の 3 次元配列
- Y (D) 作業領域. 大きさ $M \times N \times 2$ の 1 次元配列
- IT (I) 作業領域. 大きさ5の1次元配列
- T (D) 作業領域. 大きさ N×2 の 1 次元配列

5. データの格納方法

X(M,0:N-1,2) と宣言されている場合、各 I について以下のようにデータが格納される.

X(I,0,1)	X(I,0,2)	X(I,1,1)	X(I,1,2)	 X(I,N-1,1)	X(I,N-1,2)
$\operatorname{Re}(x_0)$	$\operatorname{Im}(x_0)$	$\operatorname{Re}(x_1)$	$\operatorname{Im}(x_1)$	 $\operatorname{Re}(x_{N-1})$	$\operatorname{Im}(x_{N-1})$
$\operatorname{Re}(\alpha_0)$	$\operatorname{Im}(\alpha_0)$	$\operatorname{Re}(\alpha_1)$	$\operatorname{Im}(\alpha_1)$	 $\operatorname{Re}(\alpha_{N-1})$	$\operatorname{Im}(\alpha_{N-1})$

3.2 FTTZUI/FTTZUF/FTTZUB

1. 機能

1 次元 (項数 N) の複素時系列データ $\{x_j\}$ または $\{\alpha_k\}$ が M 個与えられたとき、離散型複素フーリエ正変換、またはその逆変換を FFT により行う。ただし、N は $N=2^a3^b5^c(a,b,c:0$ または自然数)であること。FTTZUI は初期化を行う; FTTZUF はフーリエ正変換を行う; FTTZUB はフーリエ逆変換を行う。

2. 定義

● フーリエ正変換

 $\{x_i\}$ を入力し、次の変換を行ない、 $\{lpha_k\}$ を求める.

$$\alpha_k = \frac{1}{N} \sum_{j=0}^{N-1} x_j \exp(-2\pi i \frac{jk}{N}), \quad k = 0, 1, \dots, N-1$$

● フーリエ逆変換

 $\{\alpha_k\}$ を入力し、次の変換を行ない、 $\{x_i\}$ を求める.

$$x_j = \sum_{k=0}^{N-1} \alpha_k \exp(2\pi i \frac{jk}{N}), \quad j = 0, 1, \dots, N-1$$

3. 呼び出し方法

FTTZUI(N,IT,T)
FTTZUF(M,N,X,Y,IT,T)
FTTZUB(M,N,X,Y,IT,T)

4. パラメーターの説明

M (I) 入力. 同時に変換する時系列の個数 M

N (I) 入力. 変換の項数 N

X (D) 入力. $\{x_j\}$ または $\{\alpha_k\}$ 出力. $\{\alpha_k\}$ または $\{x_j\}$ 大きさ M×N×2 の 3 次元配列

Y (D) 作業領域. 大きさ M×N×2 の 1 次元配列

IT (I) 作業領域.大きさ5の1次元配列

T (D) 作業領域. 大きさ N×2 の 1 次元配列

5. データの格納方法

X(M,0:N-1,2) と宣言されている場合、各 I について以下のようにデータが格納される.

X(I,0,1)	X(I,0,2)	X(I,1,1)	X(I,1,2)	 X(I,N-1,1)	X(I,N-1,2)
$\operatorname{Re}(x_0)$	$\operatorname{Im}(x_0)$	$\operatorname{Re}(x_1)$	$\operatorname{Im}(x_1)$	 $\operatorname{Re}(x_{N-1})$	$\operatorname{Im}(x_{N-1})$
$\operatorname{Re}(\alpha_0)$	$\operatorname{Im}(\alpha_0)$	$\operatorname{Re}(\alpha_1)$	$\operatorname{Im}(\alpha_1)$	 $\operatorname{Re}(\alpha_{N-1})$	$\operatorname{Im}(\alpha_{N-1})$

3.3 FTTRUI/FTTRUF/FTTRUB

1. 機能

1 次元 (項数 N) の実時系列データ $\{x_j\}$ が M 個与えられたとき、離散型実フーリエ正変換、またはその逆変換を FFT により行う。 ただし、N は偶数で、かつ $N/2=2^a3^b5^c(a,b,c:0$ または自然数)であること。 FTTRUI は初期化を行う; FTTRUF はフーリエ正変換を行う: FTTRUB はフーリエ逆変換を行う.

2. 定義

• フーリエ正変換

 $\{x_i\}$ を入力し、次の変換を行ない、 $\{a_k\}$ 、 $\{b_k\}$ を求める.

$$a_k = \frac{1}{N} \sum_{j=0}^{N-1} x_j \cos \frac{2\pi jk}{N}, \quad k = 0, 1, \dots, N/2$$

$$b_k = -\frac{1}{N} \sum_{j=0}^{N-1} x_j \sin \frac{2\pi jk}{N}, \quad k = 1, 2, \dots, N/2 - 1$$

フーリエ逆変換

 $\{a_k\},\{b_k\}$ を入力し、次の変換を行ない、 $\{x_i\}$ を求める.

$$x_j = a_0 + a_{N/2}(-1)^j + 2\sum_{k=1}^{N/2-1} \left(a_k \cos \frac{2\pi jk}{N} - b_k \sin \frac{2\pi jk}{N}\right) \quad j = 0, 1, \dots, N-1$$

3. 呼び出し方法

FTTRUI(N,IT,T)

FTTRUF(M,N,X,Y,IT,T)

FTTRUB(M,N,X,Y,IT,T)

4. パラメーターの説明

M (I) 入力. 同時に変換する時系列の個数 M

N (I) 入力. 変換の項数 N

X (D) 入力. $\{x_j\}$ または $\{a_k\}$, $\{b_k\}$ 出力. $\{a_k\}$, $\{b_k\}$ または $\{x_j\}$ 大きさ M×N の 2 次元配列

Y (D) 作業領域. 大きさ M×N の 1 次元配列

IT (I) 作業領域. 大きさ5の1次元配列

T (D) 作業領域.大きさ N×2 の 1 次元配列

5. データの格納方法

X(M,0:N-1) と宣言されている場合、各 I について以下のようにデータが格納される.

X(I,0)	X(I,1)	X(I,2)	X(I,3)	 X(I,N-2)	X(I,N-1)
x_0	x_1	x_2	x_3	 x_{N-2}	x_{N-1}
a_0	$a_{N/2}$	a_1	b_1	 $a_{N/2-1}$	$b_{N/2-1}$

3.4 FTTCTI/FTTCTF/FTTCTB

1. 機能

周期 2π の偶関数 x(t) の半周期を N 等分した N+1 個の標本 $\{x_i\}$

$$x_j = x(\frac{\pi j}{N}), \quad j = 0, 1, \dots, N$$

が M 個与えられたとき、台形公式による離散型 cosine 変換、またはその逆変換を FFT により行なう. ただし、N は偶数で、かつ $N/2=2^a3^b5^c(a,b,c:0$ または自然数)であること.

2. 定義

● cosine 正変換 (台形公式)

 $\{x_i\}$ を入力し、次の変換を行ない、 $\{a_k\}$ を求める.

$$a_k = \frac{2}{N} \left(\frac{1}{2} x_0 + \frac{1}{2} x_N (-1)^k + \sum_{j=1}^{N-1} x_j \cos \frac{\pi j k}{N} \right) \quad (k = 0, 1, \dots, N)$$

• cosine 逆変換 (台形公式)(正変換と定数倍異なるだけ)

 $\{a_k\}$ を入力し、次の変換を行ない、 $\{x_i\}$ を求める.

$$x_j = \frac{1}{2}a_0 + \frac{1}{2}a_N(-1)^j + \sum_{k=1}^{N-1} a_k \cos \frac{\pi jk}{N} \quad (j = 0, 1, \dots, N)$$

3. 呼び出し方法

FTTCTI(N,IT,T)

FTTCTF(M,N,X,Y,IT,T)

FTTCTB(M,N,X,Y,IT,T)

4. パラメーターの説明

M (I) 入力. 同時に変換する時系列の個数

N (I) 入力. 変換の項数 - 1 (N)

X (D) 入力. $\{x_j\}$ または $\{a_k\}$ 出力. $\{a_k\}$ または $\{x_j\}$ 大きさ $\texttt{M} \times (\texttt{N} + \texttt{1})$ の 2 次元配列

Y (D) 作業領域. 大きさ M×N の 1 次元配列

IT (I) 作業領域. 大きさ5の1次元配列

(D) 作業領域.大きさ 3N の 1 次元配列

5. データの格納方法

X(M,0:N) と宣言されている場合、各Iについて以下のようにデータが格納される.

X(I,0)	X(I,1)	 X(I,N-1)	X(I,N)
x_0	x_1	 x_{N-1}	x_N
a_0	a_1	 a_{N-1}	a_N

6. 備考

● 配列 X と Y との大きさが異なることに注意.

FTTSTI/FTTSTF/FTTSTB 3.5

1. 機能

周期 2π の奇関数 x(t) の半周期を N 等分した N-1 個の標本 $\{x_i\}$,

$$x_j = x(\frac{\pi j}{N}), \quad j = 1, 2, \dots, N - 1$$

がM 個与えられたとき、台形公式による離散型 $\sin e$ 変換、またはその逆変換を FFT により行なう. ただし, N は偶数で, かつ $N/2 = 2^a 3^b 5^c (a, b, c: 0$ または自然 数) であること.

2. 定義

• sine 変換 (台形公式)

 $\{x_i\}$ を入力し、次の変換を行ない、 $\{b_k\}$ を求める.

$$b_k = \frac{2}{N} \sum_{j=1}^{N-1} x_j \sin \frac{\pi j k}{N} \quad (k = 1, 2, \dots, N-1)$$

• sine 逆変換 (台形公式)(正変換と定数倍異なるだけ)

 $\{b_k\}$ を入力し、次の変換を行ない、 $\{x_i\}$ を求める.

$$x_j = \sum_{k=1}^{N-1} b_k \sin \frac{\pi j k}{N} \quad (j = 1, 2, \dots, N-1)$$

3. 呼び出し方法

FTTSTI(N,IT,T)

FTTSTF(M,N,X,Y,IT,T)

FTTSTB(M,N,X,Y,IT,T)

4. パラメーターの説明

(I) 入力. 同時に変換する時系列の個数

(I) 入力. 変換の項数 (N)

(D) 入力. $\{x_i\}$ または $\{b_k\}$ 出力. $\{b_k\}$ または $\{x_i\}$

大きさ M×N の 2 次元配列

(D) 作業領域. 大きさ M×N の 1 次元配列

IT (I) 作業領域.大きさ5の1次元配列

(D) 作業領域. 大きさ 5N/2 の 1 次元配列

5. データの格納方法

X(M,N) と宣言されている場合、各 I について以下のようにデータが格納される.

X(I,1)	X(I,2)	 X(I,N-1)	X(I,N)
x_1	x_2	 x_{N-1}	$x_N = 0$
b_1	b_2	 b_{N-1}	$b_N = 0$

6. 備考

• 配列 X の 2 次元目の大きさは、変換データそのものを格納するよりのに必要な N-1 より 1 つだけ大きく N ととらなければならないことに注意が必要である (この部分は作業領域として使われる).

3.6 FTTCMI/FTTCMF/FTTCMB

1. 機能

周期 2π の偶関数 x(t) の半周期を N 等分した N 個の標本 $\{x_{j+1/2}\}$,

$$x_{j+1/2} = x(\frac{\pi(j+1/2)}{N}), \quad j = 0, 1, \dots, N-1$$

が M 個与えられたとき、中点公式による離散型 cosine 変換、またはその逆変換を FFT により行なう. ただし、N は偶数で、かつ $N/2=2^a3^b5^c(a,b,c:0$ または自然数) であること.

2. 定義

• cosine 正変換 (中点公式)

 $\{x_{i+1/2}\}$ を入力し、次の変換を行ない、 $\{a_k\}$ を求める.

$$a_k = \frac{2}{N} \sum_{j=0}^{N-1} x_{j+1/2} \cos \frac{\pi(j+1/2)k}{N} \quad (k=0,1,\dots,N-1)$$

• cosine 逆変換 (中点公式)

 $\{a_k\}$ を入力し、次の変換を行ない、 $\{x_{i+1/2}\}$ を求める.

$$x_{j+1/2} = \frac{1}{2}a_0 + \sum_{k=1}^{N-1} a_k \cos \frac{\pi(j+1/2)k}{N} \quad (j=0,1,\dots,N-1)$$

3. 呼び出し方法

FTTCMI(N,IT,T)

FTTCMF(M,N,X,Y,IT,T)

FTTCMB(M,N,X,Y,IT,T)

4. パラメーターの説明

M (I) 入力. 同時に変換する時系列の個数

N (I) 入力. 変換の項数 (N)

X (D) 入力. $\{x_{j+1/2}\}$ または $\{a_k\}$ 出力. $\{a_k\}$ または $\{x_{j+1/2}\}$ 大きさ M×N の 2 次元配列

Y (D) 作業領域. 大きさ M×N の 1 次元配列

IT (I) 作業領域.大きさ5の1次元配列

T (D) 作業領域.大きさ 6N の 1 次元配列

5. データの格納方法

X(M,0:N-1) と宣言されている場合、各 I について以下のようにデータが格納される.

X(I,0)	X(I,1)	 X(I,N-2)	X(I,N-1)
$x_{1/2}$	$x_{3/2}$	 $x_{N-3/2}$	$x_{N-1/2}$
a_0	a_1	 a_{N-2}	a_{N-1}

3.7 FTTSMI/FTTSMF/FTTSMB

1. 機能

周期 2π の奇関数 x(t) の半周期を N 等分した N 個の標本 $\{x_{i+1/2}\}$,

$$x_{j+1/2} = x(\frac{\pi(j+1/2)}{N}), \quad j = 0, 1, \dots, N-1$$

が M 個与えられたとき、中点公式による離散型 $\sin e$ 変換、またはその逆変換を FFT により行なう. ただし、N は偶数で、かつ $N/2=2^a3^b5^c(a,b,c:0$ または自然数)であること.

2. 定義

• sine 正変換 (中点公式)

 $\{x_{j+1/2}\}$ を入力し、次の変換を行ない、 $\{b_k\}$ を求める.

$$b_k = \frac{2}{N} \sum_{j=0}^{N-1} x_{j+1/2} \sin \frac{\pi(j+1/2)k}{N} \quad (k=1,2,\dots,N)$$

• sine 逆変換 (中点公式)

 $\{b_k\}$ を入力し、次の変換を行ない、 $\{x_{j+1/2}\}$ を求める.

$$x_{j+1/2} = \frac{1}{2}b_N(-1)^j + \sum_{k=1}^{N-1}b_k\sin\frac{\pi(j+1/2)k}{N} \quad (j=0,1,\dots,N-1)$$

3. 呼び出し方法

FTTSMI(N,IT,T)

FTTSMF(M,N,X,Y,IT,T)

FTTSMB(M,N,X,Y,IT,T)

4. パラメーターの説明

M (I) 入力. 同時に変換する時系列の個数

N (I) 入力. 変換の項数 (N)

X (D) 入力. $\{x_{j+1/2}\}$ または $\{b_k\}$ 出力. $\{b_k\}$ または $\{x_{j+1/2}\}$ 大きさ M×N の 2 次元配列

Y (D) 作業領域. 大きさ M×N の 1 次元配列

IT (I) 作業領域.大きさ5の1次元配列

(D) 作業領域、大きさ 6N の 1 次元配列

5. データの格納方法

X(M,N) と宣言されている場合、各I について以下のようにデータが格納される.

X(I,1)	X(I,2)	 X(I,N-1)	X(I,N)
$x_{1/2}$	$x_{3/2}$	 $x_{N-3/2}$	$x_{N-1/2}$
b_1	b_2	 b_{N-1}	b_N