
The effective diffusivity of cellular flows
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1 Advection-diffusion by cellular flows

In the previous chapter we dealt with unidirectional flows. Now we turn to
the slightly more complicated case of incompressible two-dimensional cellu-
lar flows. The velocity field can be obtained from a streamfunction ψ(x, y)
according to our usual convention u = (u, v) = (−ψy, ψx). The domain is a
periodic array of square cells, each with side �, so that the streamfunction
has the periodicity ψ(x+m�, y + n�) = ψ(x, y) where m and n are integers.
We use the notation

〈θ〉 ≡ �−2

∫
S
θ d2x, (1)

to denote an average over an �×� square S. We are assuming that the average
of the flow over a cell vanishes, i.e., 〈u〉 = 0. The cell-average 〈〉 will play
a role analogous to the cross-channel average of the previous sections. Thus
we will be concerned with the ‘large-scale’ transport of passive tracer where
‘large-scale’ means a length which is much greater than the cell size �. The
cell average is used to isolate the slowly varying part of the concentration.

As a illustrative example, start with the steady state advection-diffusion
equation

J(ψ, c) = κ∇2c , (2)

where J(a, b) ≡ axby−aycx is the Jacobian and κ is the molecular diffusivity
of the tracer. Following Childress (1979), Moffatt (1983) and many others we
will use the prototypical example ψ = ψmax cos(kx) cos(ky) where k = 2π/�
(see the left hand panel of figure 1).
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Figure 1: Examples of cellular flows. In left hand panel there are closed cells and
large scale transport of tracer can only occur as a result of molecular diffusion. In
this figure the cell size is � = 2π.

If we release some tracer into a steady cellular flow does the blob spread
diffusively? Without molecular diffusivity (κ = 0) the answer is clearly ‘no’.
Each tracer particle will stay on its initial streamline, and if that streamline
is closed then there can be no large-scale transport. But, with even very weak
molecular diffusivity, molecules of tracer are not confined to streamlines and
indeed there is an effective diffusivity characterizing large-scale transport.
Instead of considering the initial value problem we can obtain the effective
diffusivity using the Gx-trick. That is, we suppose that a large scale uniform
gradient G is externally imposed and we then proceed to calculate the flux F
which is associated with G. This procedure enables us to bypass the initial
value problem and deal with a simpler steady state problem.

Suppose that the system is in a big box containing N × N cells i.e. the
box is a N� × N� square. On the wall at x = 0 we impose the boundary
condition c(0, y) = 0 and on the wall at x = N�, we impose c(N�, y) = GN�.
Further, suppose that there is no flux of c through the boundaries at y = 0
and y = N�. If there is no advection (ψmax = 0) then the solution of (2) with
these boundary conditions is c = Gx. the flux associated with this ψ = 0
solution is F0 = −κG.

Now consider the general case with ψmax �= 0. Integrating (2) from y = 0

2



to y = N� we find that

F =
1

N�

∫ N�

0

uc− κcxdy (3)

is constant. F is the flux which is passing from the high-c source at x = N�
to the low-c sink at x = 0. Our goal is determine F in terms of imposed
gradient G and parameters such as the Péclet number

p ≡ ψmax/κ . (4)

The Péclet number measures the stength of advection relative to diffusion;
when p is small the diffusive solution c = Gx is only slightly distorted by
advection.
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Figure 2: Steady concentration field, x+ c′(x, y), obtained numerically using
ψ = ψmax cos kx cos ky, and various values of the Péclet number, p = ψmax/κ.
(Thanks to Raffaele Ferrari.)

The first step is to make a simple substitution

c = Gx+ c′(x, y) , (5)
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which separates c into the large-scale uniform gradient and a flow-induced
perturbation c′. Throwing (5) into (2) we obtain

J(ψ, c′) − κ∇2c′ = −Gu . (6)

Once we have solved (6) we get F by evaluating the integral in (3).
It is impossible to solve (6) exactly so instead we rely on a combination

of numerical solution and analysis of the limits p 	 1 and p 
 1. Figure 2
shows the solution of (6) with G = 1 and four different Péclet numbers.
The case with p = 1 shows that c is distorted only slightly away from the
diffusive solution c = x. When p is large the solution exemplifies the Prandtl-
Batchelor limit in which all of the variation in c is compressed into thin layers
at the eddy boundaries. Figure 3 shows how this boundary layer solution is
established in an intial value problem starting with c(x, y, 0) = x.

The p 	 1 case (weak advection) is particularly simple because to leading
order we neglect the Jacobian on the left hand side of (6) and, since u =
kψmax cos(kx) sin(ky), we quickly obtain

c′ ≈ −
[
ψmax

2kκ
cos kx sin ky

]
G . (7)

With c′ in hand, the final step is to calculate F by evaluating the integral in
(3). Because F is a constant we can make this evaluation at any x and get
the same result. Alternatively, we can average over a cell to obtain

F = −κG+ 〈uc′〉 , (8)

or, using (7),

F ≈ −
[
κ+

ψ2
max

8κ

]
G . (9)

The effect of weak advection (p 	 1) is to slightly enhance the transfer of c.
It is convenient to describe the transport properties of a flow using nondi-

mensional variables. The Nusselt number is the ratio

Nu ≡ F

F0

, (10)

where F0 = −κG is the diffusive flux which occurs if ψmax = 0. For instance,
from (9),

Nu = 1 +
p2

8
+O(p4) , (11)
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Figure 3: Unsteady concentration field obtained numerically using ψ =
ψmax cos kx cos ky with p ≡ ψmax/κ = 1000. The initial condition is
c(x, y, 0) = x. The concentration within an eddy becomes uniform as t → ∞.
(Thanks to Raffaele Ferrari.)
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Figure 4: The Nusselt number defined in (10) as a function of Péclet number p.
The solid curve is the result of a 128 × 128 spectral solution of (2). The dotted
curve labelled [0/0] is the result in (11) and [0/1] is the result in (47) ; the other
dotted curves labelled [1/1], [1/2] etcetera are the Padé sums discussed in section
3. The dashed line denoted “BL theory” is the prediction (12) which is based on
the boundary layer theory of section 5. (Figure courtesy of Raffaele Ferrari and
Aldo Manfroi.)
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where the O(p4) anticipates some later results in this lecture by indicating
the higher order corrections.

The solid curve in figure 4 is a numerical calculation of Nu(p) in the
range 0.1 < p < 1000 and the dashed curve labelled [0/0] is the small p
approximation in (11). The dashed line in figure 4, labelled “BL theory”, is
the prediction of a large-p theory, namely

Nu ∼ 1.0655p1/2 . (12)

The asymptotic prediction (12) is the subject of section 5 and problem 1.1.
Problem 1.1. Using dimensional variables the large-p result in (12) imples an effective
diffusivity Deff ∼

√
κψmax. Give a physically motivated scaling argument for this result.

Solution. Denote the boundary layer thickness in figure 2 by δ. The jump in c between
two adjacent cells is ∆c ∼ G� and since all of this varaition occurs in the boundary layer,
the flux is

F ∼ κ∆c
δ
. (13)

To determine δ, we argue that in the neighbourhood of the eddy boundary boundary the
dominant balance in the advection diffusion equation is

−Xv′(Y )cX + v(Y )cY = κcXX , (14)

where the capitals denote local coordinates and v(Y ) = kψmax sin kY . With ∂X ∼ δ−1

and ∂y ∼ k ∼ �−1 (14) implies a balance

k2ψmax ∼ κδ−2 or δ ∼
√

κ

ψmax
� . (15)

Putting (15) into (13) gives F ∼
√
κψmaxG, or Deff ∼

√
κψmax.

We can interpret the effective diffusivity
√
κψmax as

Deff = �× kψmax × δ

�
. (16)

The first factor � on the RHS is the mixing length and the second, kψmax, is the eddy
velocity. The third factor is the fraction of “active” particles, meaning particles in the
boundary layers.

2 The fundamental problem

Because (2) is linear, there must be a linear relation between the large scale
concentration gradient, G, and the flux F . In other words, we anticipate
that

F = −KG. (17)
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where K is 2 × 2 diffusion tensor. One of our goals is to calculate K for a
few simple cellular flows.

If G is not uniform then we should regard (17) as simply the first term in
an expansion of the form Fi = −KijGj + LijkGj,k + · · · We will not trouble
with higher order terms such as Lijk — obtaining the leading-order effect
contained in K is our main goal.

The advection-diffusion equation (2) has a solution of the form

c(x, y, t) = G·x + c′(x, y), (18)

where c′, like ψ, is a cellular function. The first term on the RHS of (18) is the
externally imposed, large-scale gradient; the second term c′ is the small-scale
distortion created by the velocity u advecting the large-scale field G·x.

Substituting (18) into (2) we obtain

u·∇c′ − κ∇2c′ = −uGx − vGy, (19)

where G ≡ (Gx, Gy) is a constant vector. Because (19) is a linear equation
it must be that

c′ = −aGx − bGy, (20)

where the cellular function a ≡ [a(x, y), b(x, y)] is determined by solving the
fundamental problem:

L ≡ u·∇ − κ∇2, La = u. (21)

Simple prescriptions for u will often have symmetries which will enable us to
deduce the solution of for b from the solution for a, and vice-versa (examples
follow).

The total flux is calculated using

F ≡ 〈uc− κ∇c〉 = −κG + 〈uc〉, (22)

Solving the fundamental problem and constructing c as a linear combination
of a and b then gives(

Fx
Fy

)
= −

[
κ+ 〈ua〉 〈ub〉
〈va〉 κ+ 〈vb〉

] (
Gx

Gy

)
. (23)

The 2 × 2 matrix above is the effective diffusion tensor K.
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Quadratic integrals

From (21) one can show using integration by parts that

κ〈∇a · ∇a〉 = 〈ua〉, κ〈∇b · ∇b〉 = 〈vb〉, (24)

and

〈ψJ(a, b)〉 + κ〈∇a · ∇b〉 = 〈ub〉, −〈ψJ(a, b)〉 + κ〈∇a · ∇b〉 = 〈va〉. (25)

Using these quadratic integrals the symmetric and antisymmetric parts of K
can then be written as

K(s) =

[
κ+ κ〈∇a · ∇a〉 κ〈∇a · ∇b〉
κ〈∇a · ∇b〉 κ+ κ〈∇b · ∇b〉

]
, (26)

and

K(a) =

[
0 〈ψJ(a, b)〉

−〈ψJ(a, b)〉 0

]
. (27)

With the Cauchy-Schwarz inequality, one can show that the matrix K(s) is
positive definite.

The antisymmetric part of K is equivalent to advection. To see what is
meant by this, let φ ≡ −〈ψJ(a, b)〉 and uφ ≡ (−φy, φx). In a slowly varying
situtation the averaged concentration evolves according to

〈c〉t = ∇ · K∇〈c〉 . (28)

Using the decomposition K = K(s) + K(a), (28) can be rewritten as

〈c〉t + uφ ·∇〈c〉 = ∇ · K(s)∇〈c〉 . (29)

Thus, the antisymmetric part of the diffusion tensor is equivalent to advection
with a velocity uφ.

Problem 2.1. Prove that if a, b and c are cellular functions then 〈a∇2b〉 = −〈∇a ·∇b〉 and
〈aJ(b, c)〉 = 〈cJ(a, b)〉 = 〈bJ(c, a)〉. Use these results to obtain (40) and (41). Prove that
〈∇ψ · ∇a〉 = 〈∇ψ · ∇b〉 = 0.

Problem 2.2. How does the effective diffusion tensor K change if we flip the sign of the
velocity u?
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Solution. Consider the differential operators:

L ≡ u·∇ − κ∇2, and L† ≡ −u·∇ − κ∇2. (30)

L† is the differential adjoint of L, and L† is also the operator associated with u† ≡ −u.
In addition to the vector a = (a, b), we introduce a† = (a†, b†) defined as the solution of
the †-problem. In other words,

La = u, and L†a† = −u . (31)

The flux-gradient relationship of the †-problem:(
F †

x

F †
y

)
= −

[
κ− 〈ua†〉 −〈ub†〉
−〈va†〉 κ+ 〈−vb†〉

] (
Gx

Gy

)
. (32)

The 2 × 2 matrix above is the diffusion tensor of the reversed flow, K†.
With assiduous integration by parts one can prove the identities:

〈θLφ〉 = 〈φL†θ〉 and 〈θLθ〉 = 〈θL†θ〉 = κ〈∇θ ·∇θ〉 . (33)

The identities above can be used to relate the terms in K† to those in K. For example,
consider 〈a†u†〉 = −〈a†u〉. Then 〈a†u〉 = 〈a†La〉 = 〈aL†a†〉 = −〈au〉. In this fashion,
working through the four different terms in K†, we find that

K = K†T, (34)

where T denotes “transpose”. Equation (34) shows that daggering undoes transposition.

Problem 2.3. A flow is said to be mirror symmetric if either ψ(x, y) = −ψ(−x, y) or
ψ(x, y) = −ψ(x,−y). Prove that the diffusion tensor of a mirror symmetric flow is sym-
metric.

Solution. For mirror-symmetric flows the sign of u is an accident of the choice of the
coordinate system. Consequently, using the notation of the previous problem, K = K†.
Invoking (34) we conclude that K = KT.

Problem 2.4. Prove that if ψ is mirror symmetric, and if the line of symmetry is taken to
be a coordinate axis, then K is a diagonal tensor.

Problem 2.5. A flow is said to be parity invariant in x if ψ(x, y) = ψ(−x, y) and parity
invariant in y if ψ(x, y) = ψ(x,−y). Show that if a flow has parity invariance in either x
or y then 〈ub〉 = −〈va〉.
Solution. Suppose that the parity invariance is in x so that

ψ(x, y) = ψ(−x, y) ⇒ a(x, y) = −a†(−x, y), b(x, y) = b†(−x, y) . (35)

Then:

〈u(x, y)b(x, y)〉 = 〈u(−x, y)b(−x, y)〉,
= 〈u(x, y)b†(x, y)〉, (parity invariance in x)
= −〈v(x, y)a(x, y)〉, ( K = K†T). (36)

Problem 2.6. Suppose that ψ(x, y) = ψ(y, x). Prove that 〈ua〉 = 〈vb〉.
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3 The diffusive limit: p 	 1.

The fundamental problem (21) can be nondimensionalized with

x̂ ≡ (2π/�)x , ψ = ψmaxψ̂ , â ≡ (2π/p�)a , K = κK̂ . (37)

In these nondimensional variables the cell size is 2π × 2π and the diffusion
tensor is

K̂ =

[
1 + p2〈ûâ〉 p2〈ûb̂〉
p2〈v̂â〉 1 + p2〈v̂b̂〉

]
, (38)

where p ≡ ψmax/κ is Péclet number.
Dropping the decoration on the nondimensional variables, the fundamen-

tal problem is

∇2a = −u + pJ(ψ,a) . (39)

and the nondimensional symmetric and antisymmetric parts of K are

K(s) =

[
1 + p2〈∇a · ∇a〉 p2〈∇a · ∇b〉
p2〈∇a · ∇b〉 1 + p2〈∇b · ∇b〉

]
, (40)

and

K(a) = p3

[
0 〈ψJ(a, b)〉

−〈ψJ(a, b)〉 0

]
. (41)

If p 	 1 is small we can solve (39) iteratively and explicitly calculate K.
Specifically, the expansion a = a0 + pa1 + · · · leads to

∇2a0 = −u, ∇2an = J(ψ,an−1) (n ≥ 1). (42)

Examples of the algebra are given in the problems at the end of this section.
These perturbation expansions result in power series representations of

K. For example, with ψ = sinx sin y, there are so many symmetries that
K = NuI where I is the identity matrix and Nu is the Nusselt number
defined in (10). From (57), Nu(p) has the expansion

Nu(p) = 1 + 2q

[
1 − q +

6

5
q2 − 381

250
q3 +O(p8)

]
, (43)
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where q ≡ (p/4)2. How can we extract maximum information from this
hard-won series? The answer is Padé summation.

The philosophy is that the radius of convergence of the series in (43) is
limited by a singularity in the complex-q plane. For instance, consider

1

1 + q
= 1 − q + q2 + · · · (44)

The function on the left hand side has a pole at q = −1 and consequently the
series on the right hand side does not converge if |q| > 1. In fact, the series
in the square bracket on the right hand side of (43) slightly resembles (44),
and this suggests that (43) is a convergence-limiting singularity somewhere
near q = −1. Following this heuristic argument we “resum” the terms within
the square bracket in (43) using (44):

Nu(p) = 1 + 2q

[
1

1 + q

]
+O(p6) . (45)

We refer to the result above as a “[0/1]” Padé approximant because the ratio-
nal function in the square bracket has a polynomial of order zero upstairs and
a polynomial of order one downstairs. This approximation is dotted curve
labelled [0/1] in figure 4. Our expectation is that the rational approxima-
tions, such as (45), have a greater range of validity than the naked series in
(43). Comparison with the numerical solution gratifyingly affirms this hope.

We improve on (45) by matching more terms in the series (43). Thus,
we expand a more general rational function, with three undetermined coeffi-
cients,

1 + aq

1 + bq + cq2
= 1 + (a− b)q + (b2 − ab− c)q2

+
[
c(b− a) + b(c+ ab− b2)

]
q3 +O(q4) .

(46)

Matching up terms in (46) with the series in (43) then gives

Nu(p) = 1 + 2q

[
50 + 31q

50 + 81q + 21q2

]
+O

(
p10

)
. (47)

This is a [1/2]-approximant because the numerator is a first order polyno-
mial and the denominator is second order. Figure 4 also shows two higher
order Padé approximants, [2/2] and [2/3]. Using Padé approximants of fairly
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modest order we have obtained pretty accurate results to beyod p = 10 using
a p 	 1 expansion.

The denominator in (47) has zeros at p = ±4
√

16/21i and ±4
√

65/21i.
This suggests that Nu(p), viewed as a function of complex-p, has pole sin-
gularities close to these same points. Padé summation is rolling over the
convergence problems presented by the poles of Nu(p) by using rational func-
tions as approximants. Ineed, if we could prove that the only singularities
of Nu(p) are poles then we would have a compelling motivation for trusting
extrapolation based on Padé summation. Figure 4 shows how successively
higher order Padé approximants provide alternately upper and lower bounds
on the exact answer. Thus in this particular problem Padé summation is a
potent computational tool.

These observations suggest two problems. First, can we systematically
obtain more terms in the series (43), and obtain higher order Padé approx-
imants (see Baker & Graves-Morris, 1996)? Following this route we can
obtain even more accurate approximations of K(p) and accumulate more
evidence as to the nature of the singularities in the p-plane. Second, instead
of gropping in the dark, what can we prove about the analytic structure of
K(p) (see Avellenda & Majda 1991)?

Problem 3.1. Prove that the diagonal terms of K(s) in (40) are given perturbatively by

〈∇f ·∇f〉 = 〈∇f0 ·∇f0〉 − p2〈∇f1 · ∇f1〉 + p4〈∇f2 · ∇f2〉 + · · · (48)

where f is either a or b. Show that the off-diagonal terms of K(s) are

〈∇a·∇b〉 = 〈∇a0 ·∇b0〉 − p2〈∇a1 ·∇b1〉 + p4〈∇a2 ·∇b2〉 + · · · (49)

Solution. Taking 〈am (42)〉 and integrtating by parts gives

〈∇fm ·∇gn〉 = −〈∇fm+1 ·∇gn−1〉 = −〈∇fm−1 ·∇gn+1〉, (50)

where f and g are either a or b. With f = g = a, repeatedly applying identity (50) shows
that

m− n odd: 〈∇am ·∇an〉 = 0,

m− n even: 〈∇am ·∇an〉 = (−1)(m−n)/2〈∇a(m+n)/2 ·∇a(m+n)/2〉 . (51)

Substituting a = a0 + pa1 + · · · into 〈∇a·∇a〉 and invoking (51), the sums collapse so that

〈∇a·∇a〉 = 〈∇a0 · ∇a0〉 − p2〈∇a1 · ∇a1〉 + p4〈∇a2 · ∇a2〉 + · · · (52)

There is an analogous identity for 〈∇b·∇b〉.
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Similar manipulations, with f = a and g = b in (50), give

〈∇a·∇b〉 = 〈∇a0 ·∇b0〉 − p2〈∇a1 ·∇b1〉 + p4〈∇a2 ·∇b2〉 + · · · (53)

Using (52) and (53) one can deduce higher order terms in the expansion of K(s) from
lower order terms in the expansion of a and b. This trick saves a lot of calculation in the
next examples.

Problem 3.2. The antisymmetric part of the diffusion tensor, K(a) in (41) contains only
one element; show that this element is given perturbatively by

〈ψJ(a, b)〉 = 〈∇a0 ·∇b1〉 − p2〈∇a1 ·∇b2〉 + p4〈∇a2 ·∇b3〉 + · · · (54)

-2 0 2
-3

-2

-1

0

1

2

3

X

Y

-2 0 2
-3

-2

-1

0

1

2

3

X

Y

Figure 5: Concentration field obtained using the p 	 1 expansion with
p = 2. Left hand panel shows ψ = sinx sin y and the right hand panel shows
ψ = sin2 x sin2 y.

Problem 3.3. Consider the streamfunction ψ = sinx sin y (see figure 5). Find a few terms
in the small-p expansion of K.

Solution. Because of the mirror symmetry of ψ, 〈au〉 = 〈bv〉 and 〈av〉 = 〈bu〉 = 0 so that
K is isotropic. From (42) we find

a0 = −1
2

sinx cos y, a1 = − 1
16

sin 2x, a2 = − 1
16
a0 −

1
160

sin 3x cos y, (55)

and

a3 =
3

640
sin 2x− 1

2560
sin 4x+

1
1280

sin 2x cos 2y − 1
6400

sin 4x cos 2y. (56)
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Invoking the identity (52) we get

〈ua〉 =
1
8
− p2

128
+

3p4

5120
− 381p6

500 × 214
+O(p8). (57)

Problem 3.4. Consider the streamfunction ψ = sin2 x sin2 y (see figure 5). Find a few
terms in the small-p expansion of K.

Solution. Because all the eddies rotate the same way, the mirror symmetry is broken.
However, because of parity invariance in either x or y, we can conclude that 〈vb〉 = 〈ua〉
and 〈ub〉 = −〈va〉. From (52) we find that

a0 = −1
8

sin 2y +
1
16

cos 2x sin 2y , (58)

and

a1 = − 3
128

sin 2x+
1

512
sin 4x+

1
64

sin 2x cos 2y

− 1
640

sin 4x cos 2y − 1
640

sin 2x cos 4y .
(59)

The higher order terms become increasingly cumbersome. Using the identity (52) we have

〈ua〉 =
5

128
− 269p2

163840
+

505021p4

6815744000
− 337081764493p6

100257958461440000
+O(p8) ,

= 0.0391 − 0.0263q + 0.0190q2 − 0.0138q3 +O(p8) , (60)

where we have approximated the coefficients at the fourth decimal digit and used q ≡
(p/4)2. Using (??) we find

〈va〉 = − p

128
+

57p3

163840
− 53743p5

3407872000
+

14358445251p7

20051591692288000
+O(p9) . (61)

Problem 3.5. Consider the streamfunction ψ = sinx sin y + µ cosx cos y. Calculate a few
term in the small-p expansion of the K.

Solution. Using symmetry arguments 〈au〉 = 〈bv〉 and 〈av〉 = 〈bu〉. Explicit calculation
from (42) gives

a0 = −1
2

sinx cos y +
1
2
µ cosx sin y, a1 = − 1

16
sin 2x+

1
16
µ2 sin 2x, . . . (62)

Using (52) we then have

〈ua〉 =
1
8

(
1 + µ2

)
− 1

128
(
1 − µ2

)2
p2 +

3
5120

(
1 + µ2

) (
1 − µ2

)2
p4

− 3
8192000

(
127 + 562µ2 + 127µ4

) (
1 − µ2

)2
p6 +O(p8), (63)

and

〈ub〉 =
µ

4
− µ

1024
(
1 − µ2

)2
p4 +O(p4). (64)
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4 Mathematical stuff?

To justify Padé summation we must understand the singularity structure of
K(p). We give a gentleman’s account, beginning with a folk theorem that the
spectrum of L ≡ pJ(ψ, )−∇2 is discrete and consists of a countable number
of eigenvalues λk, k = 1, 2, . . . each of finite multiplicity. The corresponding
eigenfunctions,

Lφk = λkφk , (65)

of L are complete. L is not self-adjoint and we must also consider the adjoint
operator L† = −pJ(ψ, ) − ∇2. The eigenvalues of L† are the same as those
of L, but the eignefunctions are different,

L†φ†
k = λkφ

†
k . (66)

There is an orthogonality condition, namely if λm �= λn then

〈φ†
mφn〉 = δmn . (67)

If we possessed φk and φ†
k then solving La = u would be a triviality i.e.

a =
∞∑
k=1

λ−1
k 〈φ†

ku〉φk and 〈au〉 =
∞∑
k=1

λ−1
k 〈uφ†

k〉〈uφk〉 . (68)

Even without φk and φ†
k, we see that the flux 〈au〉 can only be singular if L

has zero as an eigenvalue: then there is a zero divisor in the series (68). If
the eigenfunctions are nondegnerate this singularity is a pole.

We can locate the values of p in the complex plane at which zero divisors
in (68) appear by setting λk = 0 in (65) and regarding p itself as an eigenvalue
in the resulting generalized eigenproblem:

pmJ(ψ, φm) = ∇2φm . (69)

Numerical solution of (69) gives p1 = ,iג p2 = �i etcetera. These poles on
the imaginary p-axis limit the radius of convergence of the p 	 1 expansion.

Problem 4.1. Prove that the eigenvalues pm of the generalized eigenproblem (69) are imag-
inary.
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5 The advective limit: p 
 1

6 The packed eddy model

Consider a uniform chiral medium with a diffusivity tensor

K∗ =

(
κ∗ µ∗

−µ∗ κ∗

)
, (70)

and suppose that distant boundaries impose a concentration field C = Gx
with a uniform gradient G = Gx̂. Then the flux through the medium is

F = −Gκ∗x̂ +Gµ∗ŷ. (71)

Imagine that in this medium we insert a circular eddy (radius a) with a
streamfunction ψ = pκ(ln r/a); κ �= κ∗ is the isotropic diffusivity within the
eddy. Can we adjust the parameters so that the solution C = Gx outside
the eddy is undisturbed?

To answer the preceeding question in the affirmative, we consider the
tracer conservation equation in the eddy. We use a polar coordinate system,
(r, θ) centered on the eddy. Thus the conservation equation (??) becomes

pr−2Cθ = ∇2C, C(a, θ) = Ga cos θ. (72)

The boundary condition above ensures that the concentration is continuous
at the perimeter of the eddy. To ensure that the eddy does not produce
an external, disturbance the normal component of the flux is continuous at
r = a:

Gκ∗ cos θ −Gµ∗ sin θ = κCr(a, θ). (73)

The problem in (72) is easy to solve explicitly because of the simple and
unrealistic eddy velocity field.

The problem in (72) has the solution

C(r, θ) = Ga
(r
a

)λr

cos [λi ln(r/a) + θ] , (74)

where

λr + iλi ≡
√

1 + ip =

√√
1 + p2 + 1

2
+ i

√√
1 + p2 − 1

2
. (75)

Next, we apply the flux boundary condition in (73). This gives

κλr = κ∗, κλi = µ∗ (76)
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7 The multiscale method

As advertised at the beginning of the lecture, we now try to derive the eddy
diffusivity based on a more general method which can be applied to cases
where the tracers are dynamically active. We first write the most general
two-dimensional advection-diffusion equation for a passive tracer:

ct + J(ψ, c) − κ∇2c = s, ε ≡ lψ/ls; (77)

where s is the source term for the tracer, lψ is the eddy size (or the size of
cellular pattern in the previous examples), and ls can be seen as the scale
over which the source term varies. Here ls is assumed to be much larger than
lψ (ε 	 1). First nondimensionalizing the equation by scaling the distance
to lψ, time to κ/lψ, and velocity to ψ0/lψ, we obtain the following equation:

ct + pJ(ψ, c) = ∇2c+
sl2ψ
κ
, (78)

where p ≡ ψ0/κ is the Péclet number. Our goal here is to separate time
and spatial scales via the small parameter ε, and to do this we rewrite the
derivatives as follows:

∂x → ∂x + ε∂ξ, ∂y → ∂y + ε∂η, ∂t → ε2∂τ . (79)

Since we are interested in passive scalar transport over scale much larger than
the eddy size, in our analysis ψ is only a function of (x, y), i.e., ψ varies with
the “fast variables” only. We also assume that l2ψ/κ ∼ O(ε2), and equation
(78) now takes the following form:

ε2cτ + p(ψxcy − ψycx) + εp(ψxcη − ψycξ) − [(∂x + ε∂ξ)
2 + (∂y + ε∂η)

2]c = ε2s.
(80)

The cell-averaged equation is

ε2〈c〉τ + εp〈ψxcη − ψycξ〉 − ε2〈c〉ξξ − ε2〈c〉ηη = ε2s, (81)

and in this case it serves as a solvability condition as any constant can be a
solution to equation (80) at zeroth order. Expanding c in ε:

c = c0 + εc1 + ε2c2 + · · · ,
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we are now ready to derive ci’s order by order. To zeroth order, we have

Lc0 = 0, L ≡ p(ψx∂y − ψy∂x) − (∂2
x + ∂2

y). (82)

In terms of velocity fields, L = pu · ∇ − ∇2, which is exactly what we have
in the previous analysis (except here it is nondimensionalized). The only
nontrivial solution to equation (81) is c0 = f(ξ, η, τ). At next order (O(ε)),
we have

Lc1 = −p(ψxc0η − ψyc0ξ) − 2c0xξ − 2c0yη = −p(ψxfη − ψyfξ). (83)

This is the fundamental problem again and we can use the previous analysis
to get the solution for c1. At this point we can bridge two analyses together
by identifying G with the “slow gradient” (fξ, fη). Putting both c0 and c1
into equation (81), at order O(ε2) we obtain the diffusion equation for 〈c0〉:

〈c0〉τ + p〈ψxc1η − ψyc1ξ〉 − 〈c0〉ξξ − 〈c0〉ηη = s. (84)
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