Fundamentals of thermal convection |

Navier-Stokes-Equation (conservation of momentum) incompressible flow
ou 5
IO(E‘I‘U'VU)‘I—Vp = 77Vu+|:ext V-u=90
Inertial pressure viscous external force (conservation of mass)

Assumptions and approximations: incompressible flow (p=const), inertial (non-rotating)
frame of reference, constant Newtonian viscosity. External forces considered are
gravitational forces and electromagnetic forces.

Boundary conditions: (1) u=0 impenetrable no-slip boundary

(2) u,=adu,/on=0 impenetrable free-slip boundary

Symbols (bold symbols denote vector): p — density, u — velocity, p — pressure, n — dynamic viscosity, n — direction
normal to boundary, n — direction parallel to boundary
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Boussinesq approximation

In thermal convection the flow is driven by differences in temperature that lead by
thermal expansion to (usually small) differences in fluid density: p = p (1 - aT).
Conflict with assumption of incompressibility. Boussinesq approximation: assume

p=const in all terms, except in that for the external gravity force: F_, = pg = p,g(1-aT).
g given by gradient of potential: define hydrostatic pressure Vp, = p,g and dynamic
pressure P = p — py.

ou
— +U-Vu+VP/p, = vVu-gaT
ot
Energy equation (heat transport ol
equation). In the Boussinesq —+Uu-VI =« VzT +H'
case, adiabatic heating and 81:

frictonal heat are zero.

Symbols (index o denotes standard or reference value): a — volumetric thermal expansion coefficient, T — temperature,
g — gravity, P — dynamic pressure, v=n/p — kinematic viscosity, k — thermal diffusivity, H'=H/(pc,) — H is specific heat
generation rate per unit volume and c, is specific heat capacity.

3.2
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Rayleigh — Bénard convection

Plane layer of height D and large (infinite) horizontal extent filled with a Newtonian fluid
with constant material properties. Cartesian coordinates x,y,z, g =-g e,. Temperature
fixed to T=T_+AT at z=0 and T=T, at z=D, H'=0.

T=T
Scaling of equations D :
Non-dimensional variables: (x',y",z') = (x,y,z)/D, t’ T
=t k/D?, T'=(T-T,)/AT, u' = u D/, P* = P D?/(kn). .
Non-dimensional equations (omitting primes): 0 .
o X — T=T,+AT 3
u
P—(E+U-Vu)+VP =V’u+RaTe, .
r agA 14
Ra = J Pr=—
ol 5 KV K
— +u-VI = VT V-u=0 Rayleigh number Prandtl number

ot
Boundary conditions: w = du/dz = ov/oz =0 at z=0 and z=1; T(z=0) = 1; T(z=1) = 0.

By scaling, we replace seven physical parameters (a,k,v,AT,T,,g,D) by two numbers.

Symbols: e, — unit vector in z-direction (vertical), D — height of layer, Ra — Rayleigh number, Pr — Prandtl number, u =
(u,v,w) — cartesian velocity components
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Linear stability analysis (l)

 Trivial solution: T=1-2z, u=0, P =0. Is this solution stable, i.e. will small perturbation
decay?

* |n Earth's mantle Pr >>1, assume Pr = «,
» Assume 2-D solution (independence of y, v=0).
« Take curl of Navier-Stokes equation (eliminates pressure). Note that Vx(Te,) = -0T/ox e,..

* Represent 2D incompress. flow by stream function y: u = (u,0,w) = Vx(ye,) =
(owloz, 0, -0w/ox).

 Note that for any a with V-a=0, V2a = -Vx(Vxa). Operators V2 and Vx commulte.
w=Vxu is called vorticity.

» Perturbation T = 1-z+8, 6 << 1, u << 1. Ignore quadratic terms in small quantities.

vy = Ra 2l 0,V _yrg
OX ot OX
« Boundary conditions for y and 8: g = 0?y/0z2=06 =0 at z=0 and z=1.
« Expand into normal modes in x-direction: 0 = 6,(z,t) exp(ikx); @ = y,(z,t) exp(ikx).
* Expand in harmonic function in z-direction: 6,(z,t)=06,,(t) sin(nTr z), Y, (z,t)=W,,(t) sin(nTT 2).
Note that sine-functions satisfy all the boundary conditions.

Symbols: y — stream function, 8 — temperature perturbation, k — horizontal wave number
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Linear stability analysis (lI)

(k2+n?1?)? y,, = Ra ik 6, de,,/dt = -ik g, — (k?+n?1?) 6, Eliminate y,:

d6, _ (k2 +n2ﬂ2) k’ Ra

1le. =0
dt (K +n2zy k Y

n n

The solution has the form 6, , ~ e°t. When, at a given value of Ra, o < 0 for all n and all

k, the trivial (conductive) solution is stable. When for some k and n ¢ > 0, the conductive
solution is unstable and convection will start. The critical Rayleigh number Ra_; is found
by seeking the lowest Ra for which 0=0 is reached at any k,n. Obviously, the minimum is

obtained for n=1.
3000

Ra (k) = (k?>+112)3 / k? 2500}

2000¢

Minimum at k,,.=T/72. Wavelength is A = 2 V2.

(k)

Width of one convection cell (aspect ratio) is V2. g
1000¢
Ragi = Rag(Ki) = 2714/4 = 657.5 500¢
0 . .
0 ) 4 5

Symbols: ¢ - growth rate, Ra critical Rayleigh number, k_;; - critical wave number

crit ~ crit
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Linear stability analysis  (lll)

« Result unchanged when 3-D convection pattern is allowed. The critical wave number
is then [k| = (k2+k,?)"2 = 272. Linear stability cannot discriminate between different
planforms of convection, which is controlled by the non-linear terms. At small super-
critical Rayleigh number, the preferred pattern is two-dimensional (convection rolls).

* Resultis unchanged if a finite value of Pr is retained.

« Similar analysis (although more complicated) for other boundary conditions. For
example with no slip boundaries Ra,;; = 1708.

* In the case of internal heating, H > 0, dT/9z=0 at z=0, T=0 at z=1, the Rayleigh
number must be re-defined, replacing AT by the characteristic temperature contrast in
the conductive state, HD?/k 5
_agHD

Ra
: kv

The critical Rayleigh number in this case is, with free-slip boundaries, Ra_;; = 868.

* In a broad range of other cases (various combinations of mechanical and thermal
boundary conditions, spherical geometry) the critical Rayleigh number is typically of
the order 103,

Symbols: k,, k, — components of wavenumber vector, k — thermal conductivity,
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Pattern of convection at Ra > Ra

crit

Visualization of pattern in convection

bimodal .
experiments by shadowgraph

technique. Regular geometrical pattern
are observed at moderate values of teh
Rayleigh number, up to = 10 Ra_; .

_ At larger Rayleigh number the flow

g squares becomes irregular and time-dependent.

hexagons

Symbols: k,, ky — components of wavenumber vector, k — thermal conductivity,
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Application to Earth and Planets

For Earth‘s mantle select characteristic values:
a=2x10° K1 AT =2000 K g =10 m/s? D =2,900,000 m
K=10%m?/s p = 4000 kg/m3 n =102"-10%2 Pa s (from postglacial rebound)

= Ra =4x10° ... 4x 107 >> Rag,

For other planets, assume similar values for a, p, K, n. Use Ra,, with the ,chondritic® value of
radiogenic heating H = 1.6x10-8 Wm=3 (H‘ = 4x10-1° K/s). Without plate tectonics convection
takes place below a rigid outer shell whose bottom at radius r, is given by a temperature of
T, =1300 K (heat is conducted in the shell). In a conducting, internally heated sphere

T(r) = H/(6K) [r,>-r’] + T, = r2=r2-6k(T,-T,)/H. SetD=r,-r..

asthenosphere boundary, r, — core radius, g, — gravity at surface

o, [km] rokml | T, [K] r.lkml | goImis3 | Ray
Venus | 6050 3200 720 5950 8.9 4x108
Mars 3400 1500 220 3060 3.7 1x107
Moon 1740 400 250 960 1.6 3x10%
Symbols: r,— outer radius of planet, T, — temperature atr,, T, - transitional temperature, r, - radius of lithosphere-
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