USAGE: rcond, info = NumRu::Lapack.cgtcon( norm, dl, d, du, du2, ipiv, anorm, [:usage => usage, :help => help]) FORTRAN MANUAL SUBROUTINE CGTCON( NORM, N, DL, D, DU, DU2, IPIV, ANORM, RCOND, WORK, INFO ) * Purpose * ======= * * CGTCON estimates the reciprocal of the condition number of a complex * tridiagonal matrix A using the LU factorization as computed by * CGTTRF. * * An estimate is obtained for norm(inv(A)), and the reciprocal of the * condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))). * * Arguments * ========= * * NORM (input) CHARACTER*1 * Specifies whether the 1-norm condition number or the * infinity-norm condition number is required: * = '1' or 'O': 1-norm; * = 'I': Infinity-norm. * * N (input) INTEGER * The order of the matrix A. N >= 0. * * DL (input) COMPLEX array, dimension (N-1) * The (n-1) multipliers that define the matrix L from the * LU factorization of A as computed by CGTTRF. * * D (input) COMPLEX array, dimension (N) * The n diagonal elements of the upper triangular matrix U from * the LU factorization of A. * * DU (input) COMPLEX array, dimension (N-1) * The (n-1) elements of the first superdiagonal of U. * * DU2 (input) COMPLEX array, dimension (N-2) * The (n-2) elements of the second superdiagonal of U. * * IPIV (input) INTEGER array, dimension (N) * The pivot indices; for 1 <= i <= n, row i of the matrix was * interchanged with row IPIV(i). IPIV(i) will always be either * i or i+1; IPIV(i) = i indicates a row interchange was not * required. * * ANORM (input) REAL * If NORM = '1' or 'O', the 1-norm of the original matrix A. * If NORM = 'I', the infinity-norm of the original matrix A. * * RCOND (output) REAL * The reciprocal of the condition number of the matrix A, * computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an * estimate of the 1-norm of inv(A) computed in this routine. * * WORK (workspace) COMPLEX array, dimension (2*N) * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * * ===================================================================== *go to the page top

USAGE: ferr, berr, info, x = NumRu::Lapack.cgtrfs( trans, dl, d, du, dlf, df, duf, du2, ipiv, b, x, [:usage => usage, :help => help]) FORTRAN MANUAL SUBROUTINE CGTRFS( TRANS, N, NRHS, DL, D, DU, DLF, DF, DUF, DU2, IPIV, B, LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO ) * Purpose * ======= * * CGTRFS improves the computed solution to a system of linear * equations when the coefficient matrix is tridiagonal, and provides * error bounds and backward error estimates for the solution. * * Arguments * ========= * * TRANS (input) CHARACTER*1 * Specifies the form of the system of equations: * = 'N': A * X = B (No transpose) * = 'T': A**T * X = B (Transpose) * = 'C': A**H * X = B (Conjugate transpose) * * N (input) INTEGER * The order of the matrix A. N >= 0. * * NRHS (input) INTEGER * The number of right hand sides, i.e., the number of columns * of the matrix B. NRHS >= 0. * * DL (input) COMPLEX array, dimension (N-1) * The (n-1) subdiagonal elements of A. * * D (input) COMPLEX array, dimension (N) * The diagonal elements of A. * * DU (input) COMPLEX array, dimension (N-1) * The (n-1) superdiagonal elements of A. * * DLF (input) COMPLEX array, dimension (N-1) * The (n-1) multipliers that define the matrix L from the * LU factorization of A as computed by CGTTRF. * * DF (input) COMPLEX array, dimension (N) * The n diagonal elements of the upper triangular matrix U from * the LU factorization of A. * * DUF (input) COMPLEX array, dimension (N-1) * The (n-1) elements of the first superdiagonal of U. * * DU2 (input) COMPLEX array, dimension (N-2) * The (n-2) elements of the second superdiagonal of U. * * IPIV (input) INTEGER array, dimension (N) * The pivot indices; for 1 <= i <= n, row i of the matrix was * interchanged with row IPIV(i). IPIV(i) will always be either * i or i+1; IPIV(i) = i indicates a row interchange was not * required. * * B (input) COMPLEX array, dimension (LDB,NRHS) * The right hand side matrix B. * * LDB (input) INTEGER * The leading dimension of the array B. LDB >= max(1,N). * * X (input/output) COMPLEX array, dimension (LDX,NRHS) * On entry, the solution matrix X, as computed by CGTTRS. * On exit, the improved solution matrix X. * * LDX (input) INTEGER * The leading dimension of the array X. LDX >= max(1,N). * * FERR (output) REAL array, dimension (NRHS) * The estimated forward error bound for each solution vector * X(j) (the j-th column of the solution matrix X). * If XTRUE is the true solution corresponding to X(j), FERR(j) * is an estimated upper bound for the magnitude of the largest * element in (X(j) - XTRUE) divided by the magnitude of the * largest element in X(j). The estimate is as reliable as * the estimate for RCOND, and is almost always a slight * overestimate of the true error. * * BERR (output) REAL array, dimension (NRHS) * The componentwise relative backward error of each solution * vector X(j) (i.e., the smallest relative change in * any element of A or B that makes X(j) an exact solution). * * WORK (workspace) COMPLEX array, dimension (2*N) * * RWORK (workspace) REAL array, dimension (N) * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * * Internal Parameters * =================== * * ITMAX is the maximum number of steps of iterative refinement. * * ===================================================================== *go to the page top

USAGE: info, dl, d, du, b = NumRu::Lapack.cgtsv( dl, d, du, b, [:usage => usage, :help => help]) FORTRAN MANUAL SUBROUTINE CGTSV( N, NRHS, DL, D, DU, B, LDB, INFO ) * Purpose * ======= * * CGTSV solves the equation * * A*X = B, * * where A is an N-by-N tridiagonal matrix, by Gaussian elimination with * partial pivoting. * * Note that the equation A'*X = B may be solved by interchanging the * order of the arguments DU and DL. * * Arguments * ========= * * N (input) INTEGER * The order of the matrix A. N >= 0. * * NRHS (input) INTEGER * The number of right hand sides, i.e., the number of columns * of the matrix B. NRHS >= 0. * * DL (input/output) COMPLEX array, dimension (N-1) * On entry, DL must contain the (n-1) subdiagonal elements of * A. * On exit, DL is overwritten by the (n-2) elements of the * second superdiagonal of the upper triangular matrix U from * the LU factorization of A, in DL(1), ..., DL(n-2). * * D (input/output) COMPLEX array, dimension (N) * On entry, D must contain the diagonal elements of A. * On exit, D is overwritten by the n diagonal elements of U. * * DU (input/output) COMPLEX array, dimension (N-1) * On entry, DU must contain the (n-1) superdiagonal elements * of A. * On exit, DU is overwritten by the (n-1) elements of the first * superdiagonal of U. * * B (input/output) COMPLEX array, dimension (LDB,NRHS) * On entry, the N-by-NRHS right hand side matrix B. * On exit, if INFO = 0, the N-by-NRHS solution matrix X. * * LDB (input) INTEGER * The leading dimension of the array B. LDB >= max(1,N). * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * > 0: if INFO = i, U(i,i) is exactly zero, and the solution * has not been computed. The factorization has not been * completed unless i = N. * * ===================================================================== *go to the page top

USAGE: x, rcond, ferr, berr, info, dlf, df, duf, du2, ipiv = NumRu::Lapack.cgtsvx( fact, trans, dl, d, du, dlf, df, duf, du2, ipiv, b, [:usage => usage, :help => help]) FORTRAN MANUAL SUBROUTINE CGTSVX( FACT, TRANS, N, NRHS, DL, D, DU, DLF, DF, DUF, DU2, IPIV, B, LDB, X, LDX, RCOND, FERR, BERR, WORK, RWORK, INFO ) * Purpose * ======= * * CGTSVX uses the LU factorization to compute the solution to a complex * system of linear equations A * X = B, A**T * X = B, or A**H * X = B, * where A is a tridiagonal matrix of order N and X and B are N-by-NRHS * matrices. * * Error bounds on the solution and a condition estimate are also * provided. * * Description * =========== * * The following steps are performed: * * 1. If FACT = 'N', the LU decomposition is used to factor the matrix A * as A = L * U, where L is a product of permutation and unit lower * bidiagonal matrices and U is upper triangular with nonzeros in * only the main diagonal and first two superdiagonals. * * 2. If some U(i,i)=0, so that U is exactly singular, then the routine * returns with INFO = i. Otherwise, the factored form of A is used * to estimate the condition number of the matrix A. If the * reciprocal of the condition number is less than machine precision, * INFO = N+1 is returned as a warning, but the routine still goes on * to solve for X and compute error bounds as described below. * * 3. The system of equations is solved for X using the factored form * of A. * * 4. Iterative refinement is applied to improve the computed solution * matrix and calculate error bounds and backward error estimates * for it. * * Arguments * ========= * * FACT (input) CHARACTER*1 * Specifies whether or not the factored form of A has been * supplied on entry. * = 'F': DLF, DF, DUF, DU2, and IPIV contain the factored form * of A; DL, D, DU, DLF, DF, DUF, DU2 and IPIV will not * be modified. * = 'N': The matrix will be copied to DLF, DF, and DUF * and factored. * * TRANS (input) CHARACTER*1 * Specifies the form of the system of equations: * = 'N': A * X = B (No transpose) * = 'T': A**T * X = B (Transpose) * = 'C': A**H * X = B (Conjugate transpose) * * N (input) INTEGER * The order of the matrix A. N >= 0. * * NRHS (input) INTEGER * The number of right hand sides, i.e., the number of columns * of the matrix B. NRHS >= 0. * * DL (input) COMPLEX array, dimension (N-1) * The (n-1) subdiagonal elements of A. * * D (input) COMPLEX array, dimension (N) * The n diagonal elements of A. * * DU (input) COMPLEX array, dimension (N-1) * The (n-1) superdiagonal elements of A. * * DLF (input or output) COMPLEX array, dimension (N-1) * If FACT = 'F', then DLF is an input argument and on entry * contains the (n-1) multipliers that define the matrix L from * the LU factorization of A as computed by CGTTRF. * * If FACT = 'N', then DLF is an output argument and on exit * contains the (n-1) multipliers that define the matrix L from * the LU factorization of A. * * DF (input or output) COMPLEX array, dimension (N) * If FACT = 'F', then DF is an input argument and on entry * contains the n diagonal elements of the upper triangular * matrix U from the LU factorization of A. * * If FACT = 'N', then DF is an output argument and on exit * contains the n diagonal elements of the upper triangular * matrix U from the LU factorization of A. * * DUF (input or output) COMPLEX array, dimension (N-1) * If FACT = 'F', then DUF is an input argument and on entry * contains the (n-1) elements of the first superdiagonal of U. * * If FACT = 'N', then DUF is an output argument and on exit * contains the (n-1) elements of the first superdiagonal of U. * * DU2 (input or output) COMPLEX array, dimension (N-2) * If FACT = 'F', then DU2 is an input argument and on entry * contains the (n-2) elements of the second superdiagonal of * U. * * If FACT = 'N', then DU2 is an output argument and on exit * contains the (n-2) elements of the second superdiagonal of * U. * * IPIV (input or output) INTEGER array, dimension (N) * If FACT = 'F', then IPIV is an input argument and on entry * contains the pivot indices from the LU factorization of A as * computed by CGTTRF. * * If FACT = 'N', then IPIV is an output argument and on exit * contains the pivot indices from the LU factorization of A; * row i of the matrix was interchanged with row IPIV(i). * IPIV(i) will always be either i or i+1; IPIV(i) = i indicates * a row interchange was not required. * * B (input) COMPLEX array, dimension (LDB,NRHS) * The N-by-NRHS right hand side matrix B. * * LDB (input) INTEGER * The leading dimension of the array B. LDB >= max(1,N). * * X (output) COMPLEX array, dimension (LDX,NRHS) * If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X. * * LDX (input) INTEGER * The leading dimension of the array X. LDX >= max(1,N). * * RCOND (output) REAL * The estimate of the reciprocal condition number of the matrix * A. If RCOND is less than the machine precision (in * particular, if RCOND = 0), the matrix is singular to working * precision. This condition is indicated by a return code of * INFO > 0. * * FERR (output) REAL array, dimension (NRHS) * The estimated forward error bound for each solution vector * X(j) (the j-th column of the solution matrix X). * If XTRUE is the true solution corresponding to X(j), FERR(j) * is an estimated upper bound for the magnitude of the largest * element in (X(j) - XTRUE) divided by the magnitude of the * largest element in X(j). The estimate is as reliable as * the estimate for RCOND, and is almost always a slight * overestimate of the true error. * * BERR (output) REAL array, dimension (NRHS) * The componentwise relative backward error of each solution * vector X(j) (i.e., the smallest relative change in * any element of A or B that makes X(j) an exact solution). * * WORK (workspace) COMPLEX array, dimension (2*N) * * RWORK (workspace) REAL array, dimension (N) * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * > 0: if INFO = i, and i is * <= N: U(i,i) is exactly zero. The factorization * has not been completed unless i = N, but the * factor U is exactly singular, so the solution * and error bounds could not be computed. * RCOND = 0 is returned. * = N+1: U is nonsingular, but RCOND is less than machine * precision, meaning that the matrix is singular * to working precision. Nevertheless, the * solution and error bounds are computed because * there are a number of situations where the * computed solution can be more accurate than the * value of RCOND would suggest. * * ===================================================================== *go to the page top

USAGE: du2, ipiv, info, dl, d, du = NumRu::Lapack.cgttrf( dl, d, du, [:usage => usage, :help => help]) FORTRAN MANUAL SUBROUTINE CGTTRF( N, DL, D, DU, DU2, IPIV, INFO ) * Purpose * ======= * * CGTTRF computes an LU factorization of a complex tridiagonal matrix A * using elimination with partial pivoting and row interchanges. * * The factorization has the form * A = L * U * where L is a product of permutation and unit lower bidiagonal * matrices and U is upper triangular with nonzeros in only the main * diagonal and first two superdiagonals. * * Arguments * ========= * * N (input) INTEGER * The order of the matrix A. * * DL (input/output) COMPLEX array, dimension (N-1) * On entry, DL must contain the (n-1) sub-diagonal elements of * A. * * On exit, DL is overwritten by the (n-1) multipliers that * define the matrix L from the LU factorization of A. * * D (input/output) COMPLEX array, dimension (N) * On entry, D must contain the diagonal elements of A. * * On exit, D is overwritten by the n diagonal elements of the * upper triangular matrix U from the LU factorization of A. * * DU (input/output) COMPLEX array, dimension (N-1) * On entry, DU must contain the (n-1) super-diagonal elements * of A. * * On exit, DU is overwritten by the (n-1) elements of the first * super-diagonal of U. * * DU2 (output) COMPLEX array, dimension (N-2) * On exit, DU2 is overwritten by the (n-2) elements of the * second super-diagonal of U. * * IPIV (output) INTEGER array, dimension (N) * The pivot indices; for 1 <= i <= n, row i of the matrix was * interchanged with row IPIV(i). IPIV(i) will always be either * i or i+1; IPIV(i) = i indicates a row interchange was not * required. * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -k, the k-th argument had an illegal value * > 0: if INFO = k, U(k,k) is exactly zero. The factorization * has been completed, but the factor U is exactly * singular, and division by zero will occur if it is used * to solve a system of equations. * * ===================================================================== *go to the page top

USAGE: info, b = NumRu::Lapack.cgttrs( trans, dl, d, du, du2, ipiv, b, [:usage => usage, :help => help]) FORTRAN MANUAL SUBROUTINE CGTTRS( TRANS, N, NRHS, DL, D, DU, DU2, IPIV, B, LDB, INFO ) * Purpose * ======= * * CGTTRS solves one of the systems of equations * A * X = B, A**T * X = B, or A**H * X = B, * with a tridiagonal matrix A using the LU factorization computed * by CGTTRF. * * Arguments * ========= * * TRANS (input) CHARACTER*1 * Specifies the form of the system of equations. * = 'N': A * X = B (No transpose) * = 'T': A**T * X = B (Transpose) * = 'C': A**H * X = B (Conjugate transpose) * * N (input) INTEGER * The order of the matrix A. * * NRHS (input) INTEGER * The number of right hand sides, i.e., the number of columns * of the matrix B. NRHS >= 0. * * DL (input) COMPLEX array, dimension (N-1) * The (n-1) multipliers that define the matrix L from the * LU factorization of A. * * D (input) COMPLEX array, dimension (N) * The n diagonal elements of the upper triangular matrix U from * the LU factorization of A. * * DU (input) COMPLEX array, dimension (N-1) * The (n-1) elements of the first super-diagonal of U. * * DU2 (input) COMPLEX array, dimension (N-2) * The (n-2) elements of the second super-diagonal of U. * * IPIV (input) INTEGER array, dimension (N) * The pivot indices; for 1 <= i <= n, row i of the matrix was * interchanged with row IPIV(i). IPIV(i) will always be either * i or i+1; IPIV(i) = i indicates a row interchange was not * required. * * B (input/output) COMPLEX array, dimension (LDB,NRHS) * On entry, the matrix of right hand side vectors B. * On exit, B is overwritten by the solution vectors X. * * LDB (input) INTEGER * The leading dimension of the array B. LDB >= max(1,N). * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -k, the k-th argument had an illegal value * * ===================================================================== * * .. Local Scalars .. LOGICAL NOTRAN INTEGER ITRANS, J, JB, NB * .. * .. External Functions .. INTEGER ILAENV EXTERNAL ILAENV * .. * .. External Subroutines .. EXTERNAL CGTTS2, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX, MIN * ..go to the page top

USAGE: b = NumRu::Lapack.cgtts2( itrans, dl, d, du, du2, ipiv, b, [:usage => usage, :help => help]) FORTRAN MANUAL SUBROUTINE CGTTS2( ITRANS, N, NRHS, DL, D, DU, DU2, IPIV, B, LDB ) * Purpose * ======= * * CGTTS2 solves one of the systems of equations * A * X = B, A**T * X = B, or A**H * X = B, * with a tridiagonal matrix A using the LU factorization computed * by CGTTRF. * * Arguments * ========= * * ITRANS (input) INTEGER * Specifies the form of the system of equations. * = 0: A * X = B (No transpose) * = 1: A**T * X = B (Transpose) * = 2: A**H * X = B (Conjugate transpose) * * N (input) INTEGER * The order of the matrix A. * * NRHS (input) INTEGER * The number of right hand sides, i.e., the number of columns * of the matrix B. NRHS >= 0. * * DL (input) COMPLEX array, dimension (N-1) * The (n-1) multipliers that define the matrix L from the * LU factorization of A. * * D (input) COMPLEX array, dimension (N) * The n diagonal elements of the upper triangular matrix U from * the LU factorization of A. * * DU (input) COMPLEX array, dimension (N-1) * The (n-1) elements of the first super-diagonal of U. * * DU2 (input) COMPLEX array, dimension (N-2) * The (n-2) elements of the second super-diagonal of U. * * IPIV (input) INTEGER array, dimension (N) * The pivot indices; for 1 <= i <= n, row i of the matrix was * interchanged with row IPIV(i). IPIV(i) will always be either * i or i+1; IPIV(i) = i indicates a row interchange was not * required. * * B (input/output) COMPLEX array, dimension (LDB,NRHS) * On entry, the matrix of right hand side vectors B. * On exit, B is overwritten by the solution vectors X. * * LDB (input) INTEGER * The leading dimension of the array B. LDB >= max(1,N). * * ===================================================================== * * .. Local Scalars .. INTEGER I, J COMPLEX TEMP * .. * .. Intrinsic Functions .. INTRINSIC CONJG * ..go to the page top

back to matrix types

back to data types