USAGE: rcond, info = NumRu::Lapack.cppcon( uplo, ap, anorm, [:usage => usage, :help => help]) FORTRAN MANUAL SUBROUTINE CPPCON( UPLO, N, AP, ANORM, RCOND, WORK, RWORK, INFO ) * Purpose * ======= * * CPPCON estimates the reciprocal of the condition number (in the * 1-norm) of a complex Hermitian positive definite packed matrix using * the Cholesky factorization A = U**H*U or A = L*L**H computed by * CPPTRF. * * An estimate is obtained for norm(inv(A)), and the reciprocal of the * condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))). * * Arguments * ========= * * UPLO (input) CHARACTER*1 * = 'U': Upper triangle of A is stored; * = 'L': Lower triangle of A is stored. * * N (input) INTEGER * The order of the matrix A. N >= 0. * * AP (input) COMPLEX array, dimension (N*(N+1)/2) * The triangular factor U or L from the Cholesky factorization * A = U**H*U or A = L*L**H, packed columnwise in a linear * array. The j-th column of U or L is stored in the array AP * as follows: * if UPLO = 'U', AP(i + (j-1)*j/2) = U(i,j) for 1<=i<=j; * if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = L(i,j) for j<=i<=n. * * ANORM (input) REAL * The 1-norm (or infinity-norm) of the Hermitian matrix A. * * RCOND (output) REAL * The reciprocal of the condition number of the matrix A, * computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an * estimate of the 1-norm of inv(A) computed in this routine. * * WORK (workspace) COMPLEX array, dimension (2*N) * * RWORK (workspace) REAL array, dimension (N) * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * * ===================================================================== *go to the page top

USAGE: s, scond, amax, info = NumRu::Lapack.cppequ( uplo, ap, [:usage => usage, :help => help]) FORTRAN MANUAL SUBROUTINE CPPEQU( UPLO, N, AP, S, SCOND, AMAX, INFO ) * Purpose * ======= * * CPPEQU computes row and column scalings intended to equilibrate a * Hermitian positive definite matrix A in packed storage and reduce * its condition number (with respect to the two-norm). S contains the * scale factors, S(i)=1/sqrt(A(i,i)), chosen so that the scaled matrix * B with elements B(i,j)=S(i)*A(i,j)*S(j) has ones on the diagonal. * This choice of S puts the condition number of B within a factor N of * the smallest possible condition number over all possible diagonal * scalings. * * Arguments * ========= * * UPLO (input) CHARACTER*1 * = 'U': Upper triangle of A is stored; * = 'L': Lower triangle of A is stored. * * N (input) INTEGER * The order of the matrix A. N >= 0. * * AP (input) COMPLEX array, dimension (N*(N+1)/2) * The upper or lower triangle of the Hermitian matrix A, packed * columnwise in a linear array. The j-th column of A is stored * in the array AP as follows: * if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; * if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. * * S (output) REAL array, dimension (N) * If INFO = 0, S contains the scale factors for A. * * SCOND (output) REAL * If INFO = 0, S contains the ratio of the smallest S(i) to * the largest S(i). If SCOND >= 0.1 and AMAX is neither too * large nor too small, it is not worth scaling by S. * * AMAX (output) REAL * Absolute value of largest matrix element. If AMAX is very * close to overflow or very close to underflow, the matrix * should be scaled. * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * > 0: if INFO = i, the i-th diagonal element is nonpositive. * * ===================================================================== *go to the page top

USAGE: ferr, berr, info, x = NumRu::Lapack.cpprfs( uplo, ap, afp, b, x, [:usage => usage, :help => help]) FORTRAN MANUAL SUBROUTINE CPPRFS( UPLO, N, NRHS, AP, AFP, B, LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO ) * Purpose * ======= * * CPPRFS improves the computed solution to a system of linear * equations when the coefficient matrix is Hermitian positive definite * and packed, and provides error bounds and backward error estimates * for the solution. * * Arguments * ========= * * UPLO (input) CHARACTER*1 * = 'U': Upper triangle of A is stored; * = 'L': Lower triangle of A is stored. * * N (input) INTEGER * The order of the matrix A. N >= 0. * * NRHS (input) INTEGER * The number of right hand sides, i.e., the number of columns * of the matrices B and X. NRHS >= 0. * * AP (input) COMPLEX array, dimension (N*(N+1)/2) * The upper or lower triangle of the Hermitian matrix A, packed * columnwise in a linear array. The j-th column of A is stored * in the array AP as follows: * if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; * if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. * * AFP (input) COMPLEX array, dimension (N*(N+1)/2) * The triangular factor U or L from the Cholesky factorization * A = U**H*U or A = L*L**H, as computed by SPPTRF/CPPTRF, * packed columnwise in a linear array in the same format as A * (see AP). * * B (input) COMPLEX array, dimension (LDB,NRHS) * The right hand side matrix B. * * LDB (input) INTEGER * The leading dimension of the array B. LDB >= max(1,N). * * X (input/output) COMPLEX array, dimension (LDX,NRHS) * On entry, the solution matrix X, as computed by CPPTRS. * On exit, the improved solution matrix X. * * LDX (input) INTEGER * The leading dimension of the array X. LDX >= max(1,N). * * FERR (output) REAL array, dimension (NRHS) * The estimated forward error bound for each solution vector * X(j) (the j-th column of the solution matrix X). * If XTRUE is the true solution corresponding to X(j), FERR(j) * is an estimated upper bound for the magnitude of the largest * element in (X(j) - XTRUE) divided by the magnitude of the * largest element in X(j). The estimate is as reliable as * the estimate for RCOND, and is almost always a slight * overestimate of the true error. * * BERR (output) REAL array, dimension (NRHS) * The componentwise relative backward error of each solution * vector X(j) (i.e., the smallest relative change in * any element of A or B that makes X(j) an exact solution). * * WORK (workspace) COMPLEX array, dimension (2*N) * * RWORK (workspace) REAL array, dimension (N) * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * * Internal Parameters * =================== * * ITMAX is the maximum number of steps of iterative refinement. * * ==================================================================== *go to the page top

USAGE: info, ap, b = NumRu::Lapack.cppsv( uplo, n, ap, b, [:usage => usage, :help => help]) FORTRAN MANUAL SUBROUTINE CPPSV( UPLO, N, NRHS, AP, B, LDB, INFO ) * Purpose * ======= * * CPPSV computes the solution to a complex system of linear equations * A * X = B, * where A is an N-by-N Hermitian positive definite matrix stored in * packed format and X and B are N-by-NRHS matrices. * * The Cholesky decomposition is used to factor A as * A = U**H* U, if UPLO = 'U', or * A = L * L**H, if UPLO = 'L', * where U is an upper triangular matrix and L is a lower triangular * matrix. The factored form of A is then used to solve the system of * equations A * X = B. * * Arguments * ========= * * UPLO (input) CHARACTER*1 * = 'U': Upper triangle of A is stored; * = 'L': Lower triangle of A is stored. * * N (input) INTEGER * The number of linear equations, i.e., the order of the * matrix A. N >= 0. * * NRHS (input) INTEGER * The number of right hand sides, i.e., the number of columns * of the matrix B. NRHS >= 0. * * AP (input/output) COMPLEX array, dimension (N*(N+1)/2) * On entry, the upper or lower triangle of the Hermitian matrix * A, packed columnwise in a linear array. The j-th column of A * is stored in the array AP as follows: * if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; * if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. * See below for further details. * * On exit, if INFO = 0, the factor U or L from the Cholesky * factorization A = U**H*U or A = L*L**H, in the same storage * format as A. * * B (input/output) COMPLEX array, dimension (LDB,NRHS) * On entry, the N-by-NRHS right hand side matrix B. * On exit, if INFO = 0, the N-by-NRHS solution matrix X. * * LDB (input) INTEGER * The leading dimension of the array B. LDB >= max(1,N). * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * > 0: if INFO = i, the leading minor of order i of A is not * positive definite, so the factorization could not be * completed, and the solution has not been computed. * * Further Details * =============== * * The packed storage scheme is illustrated by the following example * when N = 4, UPLO = 'U': * * Two-dimensional storage of the Hermitian matrix A: * * a11 a12 a13 a14 * a22 a23 a24 * a33 a34 (aij = conjg(aji)) * a44 * * Packed storage of the upper triangle of A: * * AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ] * * ===================================================================== * * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL CPPTRF, CPPTRS, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX * ..go to the page top

USAGE: x, rcond, ferr, berr, info, ap, afp, equed, s, b = NumRu::Lapack.cppsvx( fact, uplo, ap, afp, equed, s, b, [:usage => usage, :help => help]) FORTRAN MANUAL SUBROUTINE CPPSVX( FACT, UPLO, N, NRHS, AP, AFP, EQUED, S, B, LDB, X, LDX, RCOND, FERR, BERR, WORK, RWORK, INFO ) * Purpose * ======= * * CPPSVX uses the Cholesky factorization A = U**H*U or A = L*L**H to * compute the solution to a complex system of linear equations * A * X = B, * where A is an N-by-N Hermitian positive definite matrix stored in * packed format and X and B are N-by-NRHS matrices. * * Error bounds on the solution and a condition estimate are also * provided. * * Description * =========== * * The following steps are performed: * * 1. If FACT = 'E', real scaling factors are computed to equilibrate * the system: * diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B * Whether or not the system will be equilibrated depends on the * scaling of the matrix A, but if equilibration is used, A is * overwritten by diag(S)*A*diag(S) and B by diag(S)*B. * * 2. If FACT = 'N' or 'E', the Cholesky decomposition is used to * factor the matrix A (after equilibration if FACT = 'E') as * A = U'* U , if UPLO = 'U', or * A = L * L', if UPLO = 'L', * where U is an upper triangular matrix, L is a lower triangular * matrix, and ' indicates conjugate transpose. * * 3. If the leading i-by-i principal minor is not positive definite, * then the routine returns with INFO = i. Otherwise, the factored * form of A is used to estimate the condition number of the matrix * A. If the reciprocal of the condition number is less than machine * precision, INFO = N+1 is returned as a warning, but the routine * still goes on to solve for X and compute error bounds as * described below. * * 4. The system of equations is solved for X using the factored form * of A. * * 5. Iterative refinement is applied to improve the computed solution * matrix and calculate error bounds and backward error estimates * for it. * * 6. If equilibration was used, the matrix X is premultiplied by * diag(S) so that it solves the original system before * equilibration. * * Arguments * ========= * * FACT (input) CHARACTER*1 * Specifies whether or not the factored form of the matrix A is * supplied on entry, and if not, whether the matrix A should be * equilibrated before it is factored. * = 'F': On entry, AFP contains the factored form of A. * If EQUED = 'Y', the matrix A has been equilibrated * with scaling factors given by S. AP and AFP will not * be modified. * = 'N': The matrix A will be copied to AFP and factored. * = 'E': The matrix A will be equilibrated if necessary, then * copied to AFP and factored. * * UPLO (input) CHARACTER*1 * = 'U': Upper triangle of A is stored; * = 'L': Lower triangle of A is stored. * * N (input) INTEGER * The number of linear equations, i.e., the order of the * matrix A. N >= 0. * * NRHS (input) INTEGER * The number of right hand sides, i.e., the number of columns * of the matrices B and X. NRHS >= 0. * * AP (input/output) COMPLEX array, dimension (N*(N+1)/2) * On entry, the upper or lower triangle of the Hermitian matrix * A, packed columnwise in a linear array, except if FACT = 'F' * and EQUED = 'Y', then A must contain the equilibrated matrix * diag(S)*A*diag(S). The j-th column of A is stored in the * array AP as follows: * if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; * if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. * See below for further details. A is not modified if * FACT = 'F' or 'N', or if FACT = 'E' and EQUED = 'N' on exit. * * On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by * diag(S)*A*diag(S). * * AFP (input or output) COMPLEX array, dimension (N*(N+1)/2) * If FACT = 'F', then AFP is an input argument and on entry * contains the triangular factor U or L from the Cholesky * factorization A = U**H*U or A = L*L**H, in the same storage * format as A. If EQUED .ne. 'N', then AFP is the factored * form of the equilibrated matrix A. * * If FACT = 'N', then AFP is an output argument and on exit * returns the triangular factor U or L from the Cholesky * factorization A = U**H*U or A = L*L**H of the original * matrix A. * * If FACT = 'E', then AFP is an output argument and on exit * returns the triangular factor U or L from the Cholesky * factorization A = U**H*U or A = L*L**H of the equilibrated * matrix A (see the description of AP for the form of the * equilibrated matrix). * * EQUED (input or output) CHARACTER*1 * Specifies the form of equilibration that was done. * = 'N': No equilibration (always true if FACT = 'N'). * = 'Y': Equilibration was done, i.e., A has been replaced by * diag(S) * A * diag(S). * EQUED is an input argument if FACT = 'F'; otherwise, it is an * output argument. * * S (input or output) REAL array, dimension (N) * The scale factors for A; not accessed if EQUED = 'N'. S is * an input argument if FACT = 'F'; otherwise, S is an output * argument. If FACT = 'F' and EQUED = 'Y', each element of S * must be positive. * * B (input/output) COMPLEX array, dimension (LDB,NRHS) * On entry, the N-by-NRHS right hand side matrix B. * On exit, if EQUED = 'N', B is not modified; if EQUED = 'Y', * B is overwritten by diag(S) * B. * * LDB (input) INTEGER * The leading dimension of the array B. LDB >= max(1,N). * * X (output) COMPLEX array, dimension (LDX,NRHS) * If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X to * the original system of equations. Note that if EQUED = 'Y', * A and B are modified on exit, and the solution to the * equilibrated system is inv(diag(S))*X. * * LDX (input) INTEGER * The leading dimension of the array X. LDX >= max(1,N). * * RCOND (output) REAL * The estimate of the reciprocal condition number of the matrix * A after equilibration (if done). If RCOND is less than the * machine precision (in particular, if RCOND = 0), the matrix * is singular to working precision. This condition is * indicated by a return code of INFO > 0. * * FERR (output) REAL array, dimension (NRHS) * The estimated forward error bound for each solution vector * X(j) (the j-th column of the solution matrix X). * If XTRUE is the true solution corresponding to X(j), FERR(j) * is an estimated upper bound for the magnitude of the largest * element in (X(j) - XTRUE) divided by the magnitude of the * largest element in X(j). The estimate is as reliable as * the estimate for RCOND, and is almost always a slight * overestimate of the true error. * * BERR (output) REAL array, dimension (NRHS) * The componentwise relative backward error of each solution * vector X(j) (i.e., the smallest relative change in * any element of A or B that makes X(j) an exact solution). * * WORK (workspace) COMPLEX array, dimension (2*N) * * RWORK (workspace) REAL array, dimension (N) * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * > 0: if INFO = i, and i is * <= N: the leading minor of order i of A is * not positive definite, so the factorization * could not be completed, and the solution has not * been computed. RCOND = 0 is returned. * = N+1: U is nonsingular, but RCOND is less than machine * precision, meaning that the matrix is singular * to working precision. Nevertheless, the * solution and error bounds are computed because * there are a number of situations where the * computed solution can be more accurate than the * value of RCOND would suggest. * * Further Details * =============== * * The packed storage scheme is illustrated by the following example * when N = 4, UPLO = 'U': * * Two-dimensional storage of the Hermitian matrix A: * * a11 a12 a13 a14 * a22 a23 a24 * a33 a34 (aij = conjg(aji)) * a44 * * Packed storage of the upper triangle of A: * * AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ] * * ===================================================================== *go to the page top

USAGE: info, ap = NumRu::Lapack.cpptrf( uplo, n, ap, [:usage => usage, :help => help]) FORTRAN MANUAL SUBROUTINE CPPTRF( UPLO, N, AP, INFO ) * Purpose * ======= * * CPPTRF computes the Cholesky factorization of a complex Hermitian * positive definite matrix A stored in packed format. * * The factorization has the form * A = U**H * U, if UPLO = 'U', or * A = L * L**H, if UPLO = 'L', * where U is an upper triangular matrix and L is lower triangular. * * Arguments * ========= * * UPLO (input) CHARACTER*1 * = 'U': Upper triangle of A is stored; * = 'L': Lower triangle of A is stored. * * N (input) INTEGER * The order of the matrix A. N >= 0. * * AP (input/output) COMPLEX array, dimension (N*(N+1)/2) * On entry, the upper or lower triangle of the Hermitian matrix * A, packed columnwise in a linear array. The j-th column of A * is stored in the array AP as follows: * if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; * if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. * See below for further details. * * On exit, if INFO = 0, the triangular factor U or L from the * Cholesky factorization A = U**H*U or A = L*L**H, in the same * storage format as A. * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * > 0: if INFO = i, the leading minor of order i is not * positive definite, and the factorization could not be * completed. * * Further Details * =============== * * The packed storage scheme is illustrated by the following example * when N = 4, UPLO = 'U': * * Two-dimensional storage of the Hermitian matrix A: * * a11 a12 a13 a14 * a22 a23 a24 * a33 a34 (aij = conjg(aji)) * a44 * * Packed storage of the upper triangle of A: * * AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ] * * ===================================================================== *go to the page top

USAGE: info, ap = NumRu::Lapack.cpptri( uplo, n, ap, [:usage => usage, :help => help]) FORTRAN MANUAL SUBROUTINE CPPTRI( UPLO, N, AP, INFO ) * Purpose * ======= * * CPPTRI computes the inverse of a complex Hermitian positive definite * matrix A using the Cholesky factorization A = U**H*U or A = L*L**H * computed by CPPTRF. * * Arguments * ========= * * UPLO (input) CHARACTER*1 * = 'U': Upper triangular factor is stored in AP; * = 'L': Lower triangular factor is stored in AP. * * N (input) INTEGER * The order of the matrix A. N >= 0. * * AP (input/output) COMPLEX array, dimension (N*(N+1)/2) * On entry, the triangular factor U or L from the Cholesky * factorization A = U**H*U or A = L*L**H, packed columnwise as * a linear array. The j-th column of U or L is stored in the * array AP as follows: * if UPLO = 'U', AP(i + (j-1)*j/2) = U(i,j) for 1<=i<=j; * if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = L(i,j) for j<=i<=n. * * On exit, the upper or lower triangle of the (Hermitian) * inverse of A, overwriting the input factor U or L. * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * > 0: if INFO = i, the (i,i) element of the factor U or L is * zero, and the inverse could not be computed. * * ===================================================================== *go to the page top

USAGE: info, b = NumRu::Lapack.cpptrs( uplo, n, ap, b, [:usage => usage, :help => help]) FORTRAN MANUAL SUBROUTINE CPPTRS( UPLO, N, NRHS, AP, B, LDB, INFO ) * Purpose * ======= * * CPPTRS solves a system of linear equations A*X = B with a Hermitian * positive definite matrix A in packed storage using the Cholesky * factorization A = U**H*U or A = L*L**H computed by CPPTRF. * * Arguments * ========= * * UPLO (input) CHARACTER*1 * = 'U': Upper triangle of A is stored; * = 'L': Lower triangle of A is stored. * * N (input) INTEGER * The order of the matrix A. N >= 0. * * NRHS (input) INTEGER * The number of right hand sides, i.e., the number of columns * of the matrix B. NRHS >= 0. * * AP (input) COMPLEX array, dimension (N*(N+1)/2) * The triangular factor U or L from the Cholesky factorization * A = U**H*U or A = L*L**H, packed columnwise in a linear * array. The j-th column of U or L is stored in the array AP * as follows: * if UPLO = 'U', AP(i + (j-1)*j/2) = U(i,j) for 1<=i<=j; * if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = L(i,j) for j<=i<=n. * * B (input/output) COMPLEX array, dimension (LDB,NRHS) * On entry, the right hand side matrix B. * On exit, the solution matrix X. * * LDB (input) INTEGER * The leading dimension of the array B. LDB >= max(1,N). * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * * ===================================================================== * * .. Local Scalars .. LOGICAL UPPER INTEGER I * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL CTPSV, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX * ..go to the page top

back to matrix types

back to data types