USAGE: rcond, info = NumRu::Lapack.zpbcon( uplo, kd, ab, anorm, [:usage => usage, :help => help]) FORTRAN MANUAL SUBROUTINE ZPBCON( UPLO, N, KD, AB, LDAB, ANORM, RCOND, WORK, RWORK, INFO ) * Purpose * ======= * * ZPBCON estimates the reciprocal of the condition number (in the * 1-norm) of a complex Hermitian positive definite band matrix using * the Cholesky factorization A = U**H*U or A = L*L**H computed by * ZPBTRF. * * An estimate is obtained for norm(inv(A)), and the reciprocal of the * condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))). * * Arguments * ========= * * UPLO (input) CHARACTER*1 * = 'U': Upper triangular factor stored in AB; * = 'L': Lower triangular factor stored in AB. * * N (input) INTEGER * The order of the matrix A. N >= 0. * * KD (input) INTEGER * The number of superdiagonals of the matrix A if UPLO = 'U', * or the number of sub-diagonals if UPLO = 'L'. KD >= 0. * * AB (input) COMPLEX*16 array, dimension (LDAB,N) * The triangular factor U or L from the Cholesky factorization * A = U**H*U or A = L*L**H of the band matrix A, stored in the * first KD+1 rows of the array. The j-th column of U or L is * stored in the j-th column of the array AB as follows: * if UPLO ='U', AB(kd+1+i-j,j) = U(i,j) for max(1,j-kd)<=i<=j; * if UPLO ='L', AB(1+i-j,j) = L(i,j) for j<=i<=min(n,j+kd). * * LDAB (input) INTEGER * The leading dimension of the array AB. LDAB >= KD+1. * * ANORM (input) DOUBLE PRECISION * The 1-norm (or infinity-norm) of the Hermitian band matrix A. * * RCOND (output) DOUBLE PRECISION * The reciprocal of the condition number of the matrix A, * computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an * estimate of the 1-norm of inv(A) computed in this routine. * * WORK (workspace) COMPLEX*16 array, dimension (2*N) * * RWORK (workspace) DOUBLE PRECISION array, dimension (N) * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * * ===================================================================== *go to the page top

USAGE: s, scond, amax, info = NumRu::Lapack.zpbequ( uplo, kd, ab, [:usage => usage, :help => help]) FORTRAN MANUAL SUBROUTINE ZPBEQU( UPLO, N, KD, AB, LDAB, S, SCOND, AMAX, INFO ) * Purpose * ======= * * ZPBEQU computes row and column scalings intended to equilibrate a * Hermitian positive definite band matrix A and reduce its condition * number (with respect to the two-norm). S contains the scale factors, * S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with * elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal. This * choice of S puts the condition number of B within a factor N of the * smallest possible condition number over all possible diagonal * scalings. * * Arguments * ========= * * UPLO (input) CHARACTER*1 * = 'U': Upper triangular of A is stored; * = 'L': Lower triangular of A is stored. * * N (input) INTEGER * The order of the matrix A. N >= 0. * * KD (input) INTEGER * The number of superdiagonals of the matrix A if UPLO = 'U', * or the number of subdiagonals if UPLO = 'L'. KD >= 0. * * AB (input) COMPLEX*16 array, dimension (LDAB,N) * The upper or lower triangle of the Hermitian band matrix A, * stored in the first KD+1 rows of the array. The j-th column * of A is stored in the j-th column of the array AB as follows: * if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; * if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). * * LDAB (input) INTEGER * The leading dimension of the array A. LDAB >= KD+1. * * S (output) DOUBLE PRECISION array, dimension (N) * If INFO = 0, S contains the scale factors for A. * * SCOND (output) DOUBLE PRECISION * If INFO = 0, S contains the ratio of the smallest S(i) to * the largest S(i). If SCOND >= 0.1 and AMAX is neither too * large nor too small, it is not worth scaling by S. * * AMAX (output) DOUBLE PRECISION * Absolute value of largest matrix element. If AMAX is very * close to overflow or very close to underflow, the matrix * should be scaled. * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value. * > 0: if INFO = i, the i-th diagonal element is nonpositive. * * ===================================================================== *go to the page top

USAGE: ferr, berr, info, x = NumRu::Lapack.zpbrfs( uplo, kd, ab, afb, b, x, [:usage => usage, :help => help]) FORTRAN MANUAL SUBROUTINE ZPBRFS( UPLO, N, KD, NRHS, AB, LDAB, AFB, LDAFB, B, LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO ) * Purpose * ======= * * ZPBRFS improves the computed solution to a system of linear * equations when the coefficient matrix is Hermitian positive definite * and banded, and provides error bounds and backward error estimates * for the solution. * * Arguments * ========= * * UPLO (input) CHARACTER*1 * = 'U': Upper triangle of A is stored; * = 'L': Lower triangle of A is stored. * * N (input) INTEGER * The order of the matrix A. N >= 0. * * KD (input) INTEGER * The number of superdiagonals of the matrix A if UPLO = 'U', * or the number of subdiagonals if UPLO = 'L'. KD >= 0. * * NRHS (input) INTEGER * The number of right hand sides, i.e., the number of columns * of the matrices B and X. NRHS >= 0. * * AB (input) DOUBLE PRECISION array, dimension (LDAB,N) * The upper or lower triangle of the Hermitian band matrix A, * stored in the first KD+1 rows of the array. The j-th column * of A is stored in the j-th column of the array AB as follows: * if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; * if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). * * LDAB (input) INTEGER * The leading dimension of the array AB. LDAB >= KD+1. * * AFB (input) COMPLEX*16 array, dimension (LDAFB,N) * The triangular factor U or L from the Cholesky factorization * A = U**H*U or A = L*L**H of the band matrix A as computed by * ZPBTRF, in the same storage format as A (see AB). * * LDAFB (input) INTEGER * The leading dimension of the array AFB. LDAFB >= KD+1. * * B (input) COMPLEX*16 array, dimension (LDB,NRHS) * The right hand side matrix B. * * LDB (input) INTEGER * The leading dimension of the array B. LDB >= max(1,N). * * X (input/output) COMPLEX*16 array, dimension (LDX,NRHS) * On entry, the solution matrix X, as computed by ZPBTRS. * On exit, the improved solution matrix X. * * LDX (input) INTEGER * The leading dimension of the array X. LDX >= max(1,N). * * FERR (output) DOUBLE PRECISION array, dimension (NRHS) * The estimated forward error bound for each solution vector * X(j) (the j-th column of the solution matrix X). * If XTRUE is the true solution corresponding to X(j), FERR(j) * is an estimated upper bound for the magnitude of the largest * element in (X(j) - XTRUE) divided by the magnitude of the * largest element in X(j). The estimate is as reliable as * the estimate for RCOND, and is almost always a slight * overestimate of the true error. * * BERR (output) DOUBLE PRECISION array, dimension (NRHS) * The componentwise relative backward error of each solution * vector X(j) (i.e., the smallest relative change in * any element of A or B that makes X(j) an exact solution). * * WORK (workspace) COMPLEX*16 array, dimension (2*N) * * RWORK (workspace) DOUBLE PRECISION array, dimension (N) * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * * Internal Parameters * =================== * * ITMAX is the maximum number of steps of iterative refinement. * * ===================================================================== *go to the page top

USAGE: info, ab = NumRu::Lapack.zpbstf( uplo, kd, ab, [:usage => usage, :help => help]) FORTRAN MANUAL SUBROUTINE ZPBSTF( UPLO, N, KD, AB, LDAB, INFO ) * Purpose * ======= * * ZPBSTF computes a split Cholesky factorization of a complex * Hermitian positive definite band matrix A. * * This routine is designed to be used in conjunction with ZHBGST. * * The factorization has the form A = S**H*S where S is a band matrix * of the same bandwidth as A and the following structure: * * S = ( U ) * ( M L ) * * where U is upper triangular of order m = (n+kd)/2, and L is lower * triangular of order n-m. * * Arguments * ========= * * UPLO (input) CHARACTER*1 * = 'U': Upper triangle of A is stored; * = 'L': Lower triangle of A is stored. * * N (input) INTEGER * The order of the matrix A. N >= 0. * * KD (input) INTEGER * The number of superdiagonals of the matrix A if UPLO = 'U', * or the number of subdiagonals if UPLO = 'L'. KD >= 0. * * AB (input/output) COMPLEX*16 array, dimension (LDAB,N) * On entry, the upper or lower triangle of the Hermitian band * matrix A, stored in the first kd+1 rows of the array. The * j-th column of A is stored in the j-th column of the array AB * as follows: * if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; * if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). * * On exit, if INFO = 0, the factor S from the split Cholesky * factorization A = S**H*S. See Further Details. * * LDAB (input) INTEGER * The leading dimension of the array AB. LDAB >= KD+1. * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * > 0: if INFO = i, the factorization could not be completed, * because the updated element a(i,i) was negative; the * matrix A is not positive definite. * * Further Details * =============== * * The band storage scheme is illustrated by the following example, when * N = 7, KD = 2: * * S = ( s11 s12 s13 ) * ( s22 s23 s24 ) * ( s33 s34 ) * ( s44 ) * ( s53 s54 s55 ) * ( s64 s65 s66 ) * ( s75 s76 s77 ) * * If UPLO = 'U', the array AB holds: * * on entry: on exit: * * * * a13 a24 a35 a46 a57 * * s13 s24 s53' s64' s75' * * a12 a23 a34 a45 a56 a67 * s12 s23 s34 s54' s65' s76' * a11 a22 a33 a44 a55 a66 a77 s11 s22 s33 s44 s55 s66 s77 * * If UPLO = 'L', the array AB holds: * * on entry: on exit: * * a11 a22 a33 a44 a55 a66 a77 s11 s22 s33 s44 s55 s66 s77 * a21 a32 a43 a54 a65 a76 * s12' s23' s34' s54 s65 s76 * * a31 a42 a53 a64 a64 * * s13' s24' s53 s64 s75 * * * * Array elements marked * are not used by the routine; s12' denotes * conjg(s12); the diagonal elements of S are real. * * ===================================================================== *go to the page top

USAGE: info, ab, b = NumRu::Lapack.zpbsv( uplo, kd, ab, b, [:usage => usage, :help => help]) FORTRAN MANUAL SUBROUTINE ZPBSV( UPLO, N, KD, NRHS, AB, LDAB, B, LDB, INFO ) * Purpose * ======= * * ZPBSV computes the solution to a complex system of linear equations * A * X = B, * where A is an N-by-N Hermitian positive definite band matrix and X * and B are N-by-NRHS matrices. * * The Cholesky decomposition is used to factor A as * A = U**H * U, if UPLO = 'U', or * A = L * L**H, if UPLO = 'L', * where U is an upper triangular band matrix, and L is a lower * triangular band matrix, with the same number of superdiagonals or * subdiagonals as A. The factored form of A is then used to solve the * system of equations A * X = B. * * Arguments * ========= * * UPLO (input) CHARACTER*1 * = 'U': Upper triangle of A is stored; * = 'L': Lower triangle of A is stored. * * N (input) INTEGER * The number of linear equations, i.e., the order of the * matrix A. N >= 0. * * KD (input) INTEGER * The number of superdiagonals of the matrix A if UPLO = 'U', * or the number of subdiagonals if UPLO = 'L'. KD >= 0. * * NRHS (input) INTEGER * The number of right hand sides, i.e., the number of columns * of the matrix B. NRHS >= 0. * * AB (input/output) COMPLEX*16 array, dimension (LDAB,N) * On entry, the upper or lower triangle of the Hermitian band * matrix A, stored in the first KD+1 rows of the array. The * j-th column of A is stored in the j-th column of the array AB * as follows: * if UPLO = 'U', AB(KD+1+i-j,j) = A(i,j) for max(1,j-KD)<=i<=j; * if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(N,j+KD). * See below for further details. * * On exit, if INFO = 0, the triangular factor U or L from the * Cholesky factorization A = U**H*U or A = L*L**H of the band * matrix A, in the same storage format as A. * * LDAB (input) INTEGER * The leading dimension of the array AB. LDAB >= KD+1. * * B (input/output) COMPLEX*16 array, dimension (LDB,NRHS) * On entry, the N-by-NRHS right hand side matrix B. * On exit, if INFO = 0, the N-by-NRHS solution matrix X. * * LDB (input) INTEGER * The leading dimension of the array B. LDB >= max(1,N). * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * > 0: if INFO = i, the leading minor of order i of A is not * positive definite, so the factorization could not be * completed, and the solution has not been computed. * * Further Details * =============== * * The band storage scheme is illustrated by the following example, when * N = 6, KD = 2, and UPLO = 'U': * * On entry: On exit: * * * * a13 a24 a35 a46 * * u13 u24 u35 u46 * * a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56 * a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66 * * Similarly, if UPLO = 'L' the format of A is as follows: * * On entry: On exit: * * a11 a22 a33 a44 a55 a66 l11 l22 l33 l44 l55 l66 * a21 a32 a43 a54 a65 * l21 l32 l43 l54 l65 * * a31 a42 a53 a64 * * l31 l42 l53 l64 * * * * Array elements marked * are not used by the routine. * * ===================================================================== * * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA, ZPBTRF, ZPBTRS * .. * .. Intrinsic Functions .. INTRINSIC MAX * ..go to the page top

USAGE: x, rcond, ferr, berr, info, ab, afb, equed, s, b = NumRu::Lapack.zpbsvx( fact, uplo, kd, ab, afb, equed, s, b, [:usage => usage, :help => help]) FORTRAN MANUAL SUBROUTINE ZPBSVX( FACT, UPLO, N, KD, NRHS, AB, LDAB, AFB, LDAFB, EQUED, S, B, LDB, X, LDX, RCOND, FERR, BERR, WORK, RWORK, INFO ) * Purpose * ======= * * ZPBSVX uses the Cholesky factorization A = U**H*U or A = L*L**H to * compute the solution to a complex system of linear equations * A * X = B, * where A is an N-by-N Hermitian positive definite band matrix and X * and B are N-by-NRHS matrices. * * Error bounds on the solution and a condition estimate are also * provided. * * Description * =========== * * The following steps are performed: * * 1. If FACT = 'E', real scaling factors are computed to equilibrate * the system: * diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B * Whether or not the system will be equilibrated depends on the * scaling of the matrix A, but if equilibration is used, A is * overwritten by diag(S)*A*diag(S) and B by diag(S)*B. * * 2. If FACT = 'N' or 'E', the Cholesky decomposition is used to * factor the matrix A (after equilibration if FACT = 'E') as * A = U**H * U, if UPLO = 'U', or * A = L * L**H, if UPLO = 'L', * where U is an upper triangular band matrix, and L is a lower * triangular band matrix. * * 3. If the leading i-by-i principal minor is not positive definite, * then the routine returns with INFO = i. Otherwise, the factored * form of A is used to estimate the condition number of the matrix * A. If the reciprocal of the condition number is less than machine * precision, INFO = N+1 is returned as a warning, but the routine * still goes on to solve for X and compute error bounds as * described below. * * 4. The system of equations is solved for X using the factored form * of A. * * 5. Iterative refinement is applied to improve the computed solution * matrix and calculate error bounds and backward error estimates * for it. * * 6. If equilibration was used, the matrix X is premultiplied by * diag(S) so that it solves the original system before * equilibration. * * Arguments * ========= * * FACT (input) CHARACTER*1 * Specifies whether or not the factored form of the matrix A is * supplied on entry, and if not, whether the matrix A should be * equilibrated before it is factored. * = 'F': On entry, AFB contains the factored form of A. * If EQUED = 'Y', the matrix A has been equilibrated * with scaling factors given by S. AB and AFB will not * be modified. * = 'N': The matrix A will be copied to AFB and factored. * = 'E': The matrix A will be equilibrated if necessary, then * copied to AFB and factored. * * UPLO (input) CHARACTER*1 * = 'U': Upper triangle of A is stored; * = 'L': Lower triangle of A is stored. * * N (input) INTEGER * The number of linear equations, i.e., the order of the * matrix A. N >= 0. * * KD (input) INTEGER * The number of superdiagonals of the matrix A if UPLO = 'U', * or the number of subdiagonals if UPLO = 'L'. KD >= 0. * * NRHS (input) INTEGER * The number of right-hand sides, i.e., the number of columns * of the matrices B and X. NRHS >= 0. * * AB (input/output) COMPLEX*16 array, dimension (LDAB,N) * On entry, the upper or lower triangle of the Hermitian band * matrix A, stored in the first KD+1 rows of the array, except * if FACT = 'F' and EQUED = 'Y', then A must contain the * equilibrated matrix diag(S)*A*diag(S). The j-th column of A * is stored in the j-th column of the array AB as follows: * if UPLO = 'U', AB(KD+1+i-j,j) = A(i,j) for max(1,j-KD)<=i<=j; * if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(N,j+KD). * See below for further details. * * On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by * diag(S)*A*diag(S). * * LDAB (input) INTEGER * The leading dimension of the array A. LDAB >= KD+1. * * AFB (input or output) COMPLEX*16 array, dimension (LDAFB,N) * If FACT = 'F', then AFB is an input argument and on entry * contains the triangular factor U or L from the Cholesky * factorization A = U**H*U or A = L*L**H of the band matrix * A, in the same storage format as A (see AB). If EQUED = 'Y', * then AFB is the factored form of the equilibrated matrix A. * * If FACT = 'N', then AFB is an output argument and on exit * returns the triangular factor U or L from the Cholesky * factorization A = U**H*U or A = L*L**H. * * If FACT = 'E', then AFB is an output argument and on exit * returns the triangular factor U or L from the Cholesky * factorization A = U**H*U or A = L*L**H of the equilibrated * matrix A (see the description of A for the form of the * equilibrated matrix). * * LDAFB (input) INTEGER * The leading dimension of the array AFB. LDAFB >= KD+1. * * EQUED (input or output) CHARACTER*1 * Specifies the form of equilibration that was done. * = 'N': No equilibration (always true if FACT = 'N'). * = 'Y': Equilibration was done, i.e., A has been replaced by * diag(S) * A * diag(S). * EQUED is an input argument if FACT = 'F'; otherwise, it is an * output argument. * * S (input or output) DOUBLE PRECISION array, dimension (N) * The scale factors for A; not accessed if EQUED = 'N'. S is * an input argument if FACT = 'F'; otherwise, S is an output * argument. If FACT = 'F' and EQUED = 'Y', each element of S * must be positive. * * B (input/output) COMPLEX*16 array, dimension (LDB,NRHS) * On entry, the N-by-NRHS right hand side matrix B. * On exit, if EQUED = 'N', B is not modified; if EQUED = 'Y', * B is overwritten by diag(S) * B. * * LDB (input) INTEGER * The leading dimension of the array B. LDB >= max(1,N). * * X (output) COMPLEX*16 array, dimension (LDX,NRHS) * If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X to * the original system of equations. Note that if EQUED = 'Y', * A and B are modified on exit, and the solution to the * equilibrated system is inv(diag(S))*X. * * LDX (input) INTEGER * The leading dimension of the array X. LDX >= max(1,N). * * RCOND (output) DOUBLE PRECISION * The estimate of the reciprocal condition number of the matrix * A after equilibration (if done). If RCOND is less than the * machine precision (in particular, if RCOND = 0), the matrix * is singular to working precision. This condition is * indicated by a return code of INFO > 0. * * FERR (output) DOUBLE PRECISION array, dimension (NRHS) * The estimated forward error bound for each solution vector * X(j) (the j-th column of the solution matrix X). * If XTRUE is the true solution corresponding to X(j), FERR(j) * is an estimated upper bound for the magnitude of the largest * element in (X(j) - XTRUE) divided by the magnitude of the * largest element in X(j). The estimate is as reliable as * the estimate for RCOND, and is almost always a slight * overestimate of the true error. * * BERR (output) DOUBLE PRECISION array, dimension (NRHS) * The componentwise relative backward error of each solution * vector X(j) (i.e., the smallest relative change in * any element of A or B that makes X(j) an exact solution). * * WORK (workspace) COMPLEX*16 array, dimension (2*N) * * RWORK (workspace) DOUBLE PRECISION array, dimension (N) * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * > 0: if INFO = i, and i is * <= N: the leading minor of order i of A is * not positive definite, so the factorization * could not be completed, and the solution has not * been computed. RCOND = 0 is returned. * = N+1: U is nonsingular, but RCOND is less than machine * precision, meaning that the matrix is singular * to working precision. Nevertheless, the * solution and error bounds are computed because * there are a number of situations where the * computed solution can be more accurate than the * value of RCOND would suggest. * * Further Details * =============== * * The band storage scheme is illustrated by the following example, when * N = 6, KD = 2, and UPLO = 'U': * * Two-dimensional storage of the Hermitian matrix A: * * a11 a12 a13 * a22 a23 a24 * a33 a34 a35 * a44 a45 a46 * a55 a56 * (aij=conjg(aji)) a66 * * Band storage of the upper triangle of A: * * * * a13 a24 a35 a46 * * a12 a23 a34 a45 a56 * a11 a22 a33 a44 a55 a66 * * Similarly, if UPLO = 'L' the format of A is as follows: * * a11 a22 a33 a44 a55 a66 * a21 a32 a43 a54 a65 * * a31 a42 a53 a64 * * * * Array elements marked * are not used by the routine. * * ===================================================================== *go to the page top

USAGE: info, ab = NumRu::Lapack.zpbtf2( uplo, kd, ab, [:usage => usage, :help => help]) FORTRAN MANUAL SUBROUTINE ZPBTF2( UPLO, N, KD, AB, LDAB, INFO ) * Purpose * ======= * * ZPBTF2 computes the Cholesky factorization of a complex Hermitian * positive definite band matrix A. * * The factorization has the form * A = U' * U , if UPLO = 'U', or * A = L * L', if UPLO = 'L', * where U is an upper triangular matrix, U' is the conjugate transpose * of U, and L is lower triangular. * * This is the unblocked version of the algorithm, calling Level 2 BLAS. * * Arguments * ========= * * UPLO (input) CHARACTER*1 * Specifies whether the upper or lower triangular part of the * Hermitian matrix A is stored: * = 'U': Upper triangular * = 'L': Lower triangular * * N (input) INTEGER * The order of the matrix A. N >= 0. * * KD (input) INTEGER * The number of super-diagonals of the matrix A if UPLO = 'U', * or the number of sub-diagonals if UPLO = 'L'. KD >= 0. * * AB (input/output) COMPLEX*16 array, dimension (LDAB,N) * On entry, the upper or lower triangle of the Hermitian band * matrix A, stored in the first KD+1 rows of the array. The * j-th column of A is stored in the j-th column of the array AB * as follows: * if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; * if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). * * On exit, if INFO = 0, the triangular factor U or L from the * Cholesky factorization A = U'*U or A = L*L' of the band * matrix A, in the same storage format as A. * * LDAB (input) INTEGER * The leading dimension of the array AB. LDAB >= KD+1. * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -k, the k-th argument had an illegal value * > 0: if INFO = k, the leading minor of order k is not * positive definite, and the factorization could not be * completed. * * Further Details * =============== * * The band storage scheme is illustrated by the following example, when * N = 6, KD = 2, and UPLO = 'U': * * On entry: On exit: * * * * a13 a24 a35 a46 * * u13 u24 u35 u46 * * a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56 * a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66 * * Similarly, if UPLO = 'L' the format of A is as follows: * * On entry: On exit: * * a11 a22 a33 a44 a55 a66 l11 l22 l33 l44 l55 l66 * a21 a32 a43 a54 a65 * l21 l32 l43 l54 l65 * * a31 a42 a53 a64 * * l31 l42 l53 l64 * * * * Array elements marked * are not used by the routine. * * ===================================================================== *go to the page top

USAGE: info, ab = NumRu::Lapack.zpbtrf( uplo, kd, ab, [:usage => usage, :help => help]) FORTRAN MANUAL SUBROUTINE ZPBTRF( UPLO, N, KD, AB, LDAB, INFO ) * Purpose * ======= * * ZPBTRF computes the Cholesky factorization of a complex Hermitian * positive definite band matrix A. * * The factorization has the form * A = U**H * U, if UPLO = 'U', or * A = L * L**H, if UPLO = 'L', * where U is an upper triangular matrix and L is lower triangular. * * Arguments * ========= * * UPLO (input) CHARACTER*1 * = 'U': Upper triangle of A is stored; * = 'L': Lower triangle of A is stored. * * N (input) INTEGER * The order of the matrix A. N >= 0. * * KD (input) INTEGER * The number of superdiagonals of the matrix A if UPLO = 'U', * or the number of subdiagonals if UPLO = 'L'. KD >= 0. * * AB (input/output) COMPLEX*16 array, dimension (LDAB,N) * On entry, the upper or lower triangle of the Hermitian band * matrix A, stored in the first KD+1 rows of the array. The * j-th column of A is stored in the j-th column of the array AB * as follows: * if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; * if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). * * On exit, if INFO = 0, the triangular factor U or L from the * Cholesky factorization A = U**H*U or A = L*L**H of the band * matrix A, in the same storage format as A. * * LDAB (input) INTEGER * The leading dimension of the array AB. LDAB >= KD+1. * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * > 0: if INFO = i, the leading minor of order i is not * positive definite, and the factorization could not be * completed. * * Further Details * =============== * * The band storage scheme is illustrated by the following example, when * N = 6, KD = 2, and UPLO = 'U': * * On entry: On exit: * * * * a13 a24 a35 a46 * * u13 u24 u35 u46 * * a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56 * a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66 * * Similarly, if UPLO = 'L' the format of A is as follows: * * On entry: On exit: * * a11 a22 a33 a44 a55 a66 l11 l22 l33 l44 l55 l66 * a21 a32 a43 a54 a65 * l21 l32 l43 l54 l65 * * a31 a42 a53 a64 * * l31 l42 l53 l64 * * * * Array elements marked * are not used by the routine. * * Contributed by * Peter Mayes and Giuseppe Radicati, IBM ECSEC, Rome, March 23, 1989 * * ===================================================================== *go to the page top

USAGE: info, b = NumRu::Lapack.zpbtrs( uplo, kd, ab, b, [:usage => usage, :help => help]) FORTRAN MANUAL SUBROUTINE ZPBTRS( UPLO, N, KD, NRHS, AB, LDAB, B, LDB, INFO ) * Purpose * ======= * * ZPBTRS solves a system of linear equations A*X = B with a Hermitian * positive definite band matrix A using the Cholesky factorization * A = U**H*U or A = L*L**H computed by ZPBTRF. * * Arguments * ========= * * UPLO (input) CHARACTER*1 * = 'U': Upper triangular factor stored in AB; * = 'L': Lower triangular factor stored in AB. * * N (input) INTEGER * The order of the matrix A. N >= 0. * * KD (input) INTEGER * The number of superdiagonals of the matrix A if UPLO = 'U', * or the number of subdiagonals if UPLO = 'L'. KD >= 0. * * NRHS (input) INTEGER * The number of right hand sides, i.e., the number of columns * of the matrix B. NRHS >= 0. * * AB (input) COMPLEX*16 array, dimension (LDAB,N) * The triangular factor U or L from the Cholesky factorization * A = U**H*U or A = L*L**H of the band matrix A, stored in the * first KD+1 rows of the array. The j-th column of U or L is * stored in the j-th column of the array AB as follows: * if UPLO ='U', AB(kd+1+i-j,j) = U(i,j) for max(1,j-kd)<=i<=j; * if UPLO ='L', AB(1+i-j,j) = L(i,j) for j<=i<=min(n,j+kd). * * LDAB (input) INTEGER * The leading dimension of the array AB. LDAB >= KD+1. * * B (input/output) COMPLEX*16 array, dimension (LDB,NRHS) * On entry, the right hand side matrix B. * On exit, the solution matrix X. * * LDB (input) INTEGER * The leading dimension of the array B. LDB >= max(1,N). * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * * ===================================================================== * * .. Local Scalars .. LOGICAL UPPER INTEGER J * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA, ZTBSV * .. * .. Intrinsic Functions .. INTRINSIC MAX * ..go to the page top

back to matrix types

back to data types