USAGE: rcond, info = NumRu::Lapack.ztbcon( norm, uplo, diag, kd, ab, [:usage => usage, :help => help]) FORTRAN MANUAL SUBROUTINE ZTBCON( NORM, UPLO, DIAG, N, KD, AB, LDAB, RCOND, WORK, RWORK, INFO ) * Purpose * ======= * * ZTBCON estimates the reciprocal of the condition number of a * triangular band matrix A, in either the 1-norm or the infinity-norm. * * The norm of A is computed and an estimate is obtained for * norm(inv(A)), then the reciprocal of the condition number is * computed as * RCOND = 1 / ( norm(A) * norm(inv(A)) ). * * Arguments * ========= * * NORM (input) CHARACTER*1 * Specifies whether the 1-norm condition number or the * infinity-norm condition number is required: * = '1' or 'O': 1-norm; * = 'I': Infinity-norm. * * UPLO (input) CHARACTER*1 * = 'U': A is upper triangular; * = 'L': A is lower triangular. * * DIAG (input) CHARACTER*1 * = 'N': A is non-unit triangular; * = 'U': A is unit triangular. * * N (input) INTEGER * The order of the matrix A. N >= 0. * * KD (input) INTEGER * The number of superdiagonals or subdiagonals of the * triangular band matrix A. KD >= 0. * * AB (input) COMPLEX*16 array, dimension (LDAB,N) * The upper or lower triangular band matrix A, stored in the * first kd+1 rows of the array. The j-th column of A is stored * in the j-th column of the array AB as follows: * if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; * if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). * If DIAG = 'U', the diagonal elements of A are not referenced * and are assumed to be 1. * * LDAB (input) INTEGER * The leading dimension of the array AB. LDAB >= KD+1. * * RCOND (output) DOUBLE PRECISION * The reciprocal of the condition number of the matrix A, * computed as RCOND = 1/(norm(A) * norm(inv(A))). * * WORK (workspace) COMPLEX*16 array, dimension (2*N) * * RWORK (workspace) DOUBLE PRECISION array, dimension (N) * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * * ===================================================================== *go to the page top

USAGE: ferr, berr, info = NumRu::Lapack.ztbrfs( uplo, trans, diag, kd, ab, b, x, [:usage => usage, :help => help]) FORTRAN MANUAL SUBROUTINE ZTBRFS( UPLO, TRANS, DIAG, N, KD, NRHS, AB, LDAB, B, LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO ) * Purpose * ======= * * ZTBRFS provides error bounds and backward error estimates for the * solution to a system of linear equations with a triangular band * coefficient matrix. * * The solution matrix X must be computed by ZTBTRS or some other * means before entering this routine. ZTBRFS does not do iterative * refinement because doing so cannot improve the backward error. * * Arguments * ========= * * UPLO (input) CHARACTER*1 * = 'U': A is upper triangular; * = 'L': A is lower triangular. * * TRANS (input) CHARACTER*1 * Specifies the form of the system of equations: * = 'N': A * X = B (No transpose) * = 'T': A**T * X = B (Transpose) * = 'C': A**H * X = B (Conjugate transpose) * * DIAG (input) CHARACTER*1 * = 'N': A is non-unit triangular; * = 'U': A is unit triangular. * * N (input) INTEGER * The order of the matrix A. N >= 0. * * KD (input) INTEGER * The number of superdiagonals or subdiagonals of the * triangular band matrix A. KD >= 0. * * NRHS (input) INTEGER * The number of right hand sides, i.e., the number of columns * of the matrices B and X. NRHS >= 0. * * AB (input) COMPLEX*16 array, dimension (LDAB,N) * The upper or lower triangular band matrix A, stored in the * first kd+1 rows of the array. The j-th column of A is stored * in the j-th column of the array AB as follows: * if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; * if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). * If DIAG = 'U', the diagonal elements of A are not referenced * and are assumed to be 1. * * LDAB (input) INTEGER * The leading dimension of the array AB. LDAB >= KD+1. * * B (input) COMPLEX*16 array, dimension (LDB,NRHS) * The right hand side matrix B. * * LDB (input) INTEGER * The leading dimension of the array B. LDB >= max(1,N). * * X (input) COMPLEX*16 array, dimension (LDX,NRHS) * The solution matrix X. * * LDX (input) INTEGER * The leading dimension of the array X. LDX >= max(1,N). * * FERR (output) DOUBLE PRECISION array, dimension (NRHS) * The estimated forward error bound for each solution vector * X(j) (the j-th column of the solution matrix X). * If XTRUE is the true solution corresponding to X(j), FERR(j) * is an estimated upper bound for the magnitude of the largest * element in (X(j) - XTRUE) divided by the magnitude of the * largest element in X(j). The estimate is as reliable as * the estimate for RCOND, and is almost always a slight * overestimate of the true error. * * BERR (output) DOUBLE PRECISION array, dimension (NRHS) * The componentwise relative backward error of each solution * vector X(j) (i.e., the smallest relative change in * any element of A or B that makes X(j) an exact solution). * * WORK (workspace) COMPLEX*16 array, dimension (2*N) * * RWORK (workspace) DOUBLE PRECISION array, dimension (N) * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * * ===================================================================== *go to the page top

USAGE: info, b = NumRu::Lapack.ztbtrs( uplo, trans, diag, kd, ab, b, [:usage => usage, :help => help]) FORTRAN MANUAL SUBROUTINE ZTBTRS( UPLO, TRANS, DIAG, N, KD, NRHS, AB, LDAB, B, LDB, INFO ) * Purpose * ======= * * ZTBTRS solves a triangular system of the form * * A * X = B, A**T * X = B, or A**H * X = B, * * where A is a triangular band matrix of order N, and B is an * N-by-NRHS matrix. A check is made to verify that A is nonsingular. * * Arguments * ========= * * UPLO (input) CHARACTER*1 * = 'U': A is upper triangular; * = 'L': A is lower triangular. * * TRANS (input) CHARACTER*1 * Specifies the form of the system of equations: * = 'N': A * X = B (No transpose) * = 'T': A**T * X = B (Transpose) * = 'C': A**H * X = B (Conjugate transpose) * * DIAG (input) CHARACTER*1 * = 'N': A is non-unit triangular; * = 'U': A is unit triangular. * * N (input) INTEGER * The order of the matrix A. N >= 0. * * KD (input) INTEGER * The number of superdiagonals or subdiagonals of the * triangular band matrix A. KD >= 0. * * NRHS (input) INTEGER * The number of right hand sides, i.e., the number of columns * of the matrix B. NRHS >= 0. * * AB (input) COMPLEX*16 array, dimension (LDAB,N) * The upper or lower triangular band matrix A, stored in the * first kd+1 rows of AB. The j-th column of A is stored * in the j-th column of the array AB as follows: * if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; * if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). * If DIAG = 'U', the diagonal elements of A are not referenced * and are assumed to be 1. * * LDAB (input) INTEGER * The leading dimension of the array AB. LDAB >= KD+1. * * B (input/output) COMPLEX*16 array, dimension (LDB,NRHS) * On entry, the right hand side matrix B. * On exit, if INFO = 0, the solution matrix X. * * LDB (input) INTEGER * The leading dimension of the array B. LDB >= max(1,N). * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * > 0: if INFO = i, the i-th diagonal element of A is zero, * indicating that the matrix is singular and the * solutions X have not been computed. * * ===================================================================== *go to the page top

back to matrix types

back to data types