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We numerically examine the role of filaments in the axisymmetrization of an iso-
lated elliptic vortex with a non-uniform vorticity distribution for a two-dimensional
incompressible barotropic fluid. To guantitatively examine the role of filaments
in the axisymmetrization, we first divide the vorticity field into a core region and
a surrounding region. The former corresponds to the core of the vortex, and the
latter corresponds to the filaments and a weak vorticity region just outside the
vortex core. Second, we analyze the radial displacement of the maximum and
minimum curvature points on a vorticity contour in the core region advected by
velocities induced by the vorticity of those regions. This investigation shows that
the vorticity of the surrounding region largely contributes to the axisymmetriza-
tion at both points, especially when the filaments are forming. Thus, we conclude
that the filaments play a significant role in the axisymmetrization of the isolated
elliptic vortex.

1. INTRODUCTION

Large-scale atmospheric and oceanic motions on the earth are turbulent. Moreover planetary
rotation and density stratification tend to make the atmospheric and oceanic motions horizontally
two dimensional. To examine such aspects of atmospheric and oceanic motions, two-dimensional
turbulence has been actively studied for a long time. It is well known that the vorticity field of
decaying two-dimensional turbulence is full of long-lived and isolated vortices (McWilliams 1984%).
Thus, understanding vortex motion would be helpful for understanding two-dimensional turbulence.

Melander et al. (1987)% studied the axisymmetrization process of an isolated elliptic vortex
with a non-uniform, positive vorticity distribution for a two-dimensional incompressible barotropic
fluid. They regarded both a vorticity contour near the vortex core and the associated stream
function contour near the vorticity contour as to be ellipses. Furthermore, they proposed the
axisymmetrization prineiple,!

dr

—dg < 0. 1
dt Pd = ( )
Here, r is the aspect ratio of the vorticity contour, and ¢q is the difference angle between the
orientations of the vorticity contour and the nearby stream function contour. Because the velocity
vector is tangent to the stream function contour, eq. (1) indicates that when ¢4 > 0, inward radial
velocity is induced at the point of maximum curvature of the elliptic vorticity contour, whereas

1
11f the elliptic vortex has negative vorticity, eq. (1) changes as %@d >0.
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Figure 1: Schematic figure of a vorticity contour (ellipse with the broken line) and
a nearby stream function contour(oblique ellipse with the dot-dashed line) for an
clliptic vortex with positive vorticity. Solid lines indicate velocity vectors at the
maximum and minimum curvature points on the vorticity contour and their projec-
tion to the radial direction of the vorticity ellipse.

outward radial velocity is induced at the point of minimum curvature (Fig.1). Therefore, when
¢q > 0, the velocity field near the elliptic vorticity contour tends to axisymmetrize the vortex. The
axisymmetrization principle was confirmed by their numerical experiments.?

Melander et al. (1987)? discussed qualitatively that the angle ¢4 can be non-zero when the
vorticity field is distorted from the mirror symmetry of an ellipse due to the generation of filaments.
Therefore, they concluded that isolated elliptic vortices relax toward axisymmetry as a result of
filament gencration. However, until now, no one has investigated the contribution of the filaments
to ¢q and the quantitative relationship between ¢4 and the velocity field on the vorticity contour.

In this study, we numerically investigate the axisymmetrization of an isolated elliptic vortex in
a direct and quantitative fashion. We define a core region and a surrounding region, and we then
investigate the contribution of those regions to the axisymmetrization of an elliptic vortex.

2. GOVERNING EQUATION AND SETTINGS OF THE NUMERICAL EXPERI-
MENT

In this section, we describe the governing equation and settings of our numerical experiment.
Moreover, we describe a method for defining the core region and the surrounding region of the
vortex.

2.1 GOVERNING EQUATION AND SIMULATION CONDITIONS
The governing equation is the vorticity equation for a two-dimensional incompressible barotropic
fluid,
Ow
ot

+ J(,w) = vV, (2)

where 1 is the stream function, w = V24 is the vorticity, v is the viscosity coefficient, and J (Y, w) =
OntpOyw — yihdyw is the Jacobian. The velocity field is given by k x Vi), where k is the unit vector
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perpendicular to the z-y plane. We apply doubly periodic boundary conditions to the rectangular
domain with 27 x 27, An initial vorticity field is given by

w(r) = wp [1 — exp {—c% exp (RORU T) H ., 0<7< R, (3)

where r = +/az? + by?, and /a/b is the initial aspect ratio of the vortex. We also set C =
—LleIni ~ 2.5608517, Ry = /2, wo = 10, (a,b) = (10,1), and v = 1.5 x 107°. These parameter
values are same as those for the compact-support case in Kimura and Herring (2001).%)

We use the third-order Adams-Bashforth scheme for time stepping and the pseudospectral
method dealiased with the two-third rule at 3072% resolution. The vorticity equation (2) is in-
tegrated until £ = 15.

2.2 DIAGNOSTICS

Until now, objective definitions of the core and filaments of a vortex were not known. Instead
of a direct definition of the filaments, we divide the snapshot of the vorticity field into two parts,
a core region and a surrounding region. We identify an outermost vorticity contour that remains
elliptical throughout the integration and choose it as the boundary to divide the vorticity field into
the core region and the surrounding region. Then, we define the core region such that w(z, y) > wy,
and the surrounding region as w(z, y) < wy, where wyy, is the value of the vorticity of the outermost
contour. For the appropriate threshold value that satisfied the above condition, we use wyy, = 6. If
we slightly vary the threshold value, the result presented below does not change qualitatively.

We consider the evolution of the vorticity contour with w = 6, 7 and 8 in the core region. We
also focus on the stream function contours with values near the vorticity contours of interest. The
values of the stream function contours are selected as the mean values of the stream function at
the maximum and minimum curvature points of the vorticity contours.

The vorticity and the stream function contours of interest are regarded as ellipses similar to the
work of Melander et al. (1987).% The contours are fit to ellipses by least-square fitting (Fitzgibbon et
al. 19994).

In the two-dimensional turbulence, the Okubo-Weiss criterion(Okubo 1970%; Weiss 1991%) and
the Hua-Klein criterion(Hua and Klein 19987) are often used to select the core regions of vortices.®)
When these criterions are solely used, they select not only a core region but also some fraction of the
filaments. To remove some fraction of the filaments, additional conditions, for example the absolute
value of the vorticity must be larger than a threshold value, or the pressure must be negative, are
usually required.® ® Instead, we use simpler method described above to extract the core region.

3. RESULTS AND DISCUSSION

3.1 A BRIEF OVERVIEW OF THE EVOLUTION OF THE ISOLATED VORTEX

In this section, we briefly describe the temporal evolution of the elliptic vortex. Fig.2 shows the
time evolution of the vorticity field. Filaments are formed during the early stage of evolution, rotated
around the vortex center with a slower speed than the vortex core, and simultaneously elongated.
Filaments are formed again in 7 < ¢ < 8. At the end of the evolution, a weak vorticity region
uniformly surrounds the vortex core. The aspect ratio of the vortex greatly decreases compared
with the initial aspect ratio.

Fig.3 shows the time evolution of the aspect ratio of the vorticity contours, w = 6, 7, 8. The
aspect ratio of the vorticity contours rapidly decreases until ¢ < 1.5. After that, it oscillates during
evolution with periods of T'=1 ~ 1.8.
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Figure 2: Time evolution of the vorticity field at some instant of time. Only a quarter
of the computational domain is shown.
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Figure 3: Time evolution of the as- Figure 4: Time series of the difference an-
pect ratio of the vorticity contours with gle, ¢4(solid line), and the rate of change
w = 6(solid line), 7(broken line), 8(dotted of the aspect ratio, dr/d¢ (broken line),
line). for the vorticity contour with w = 6.

Fig.4 shows the evolution of the difference angle, ¢4, and the rate of change of the aspect ratio,
4% The axisymmetrization principle, ¢a% < 0, proposed by Melander et al. (1987)? is well satisfied
by our simulation.

Note that the aspect ratios of the vorticity contours show a short time increase in 6 < ¢ < 7.
This can be explained by the reattachment of the filaments to the core, which generates a strong
anti-mirror symmetric vorticity field near the core corresponding to ¢g < 0.

Fig.5 and Fig.6 show the snapshots of the core region and the surrounding region of the vorticity
field, respectively. Fig.5 shows that all of the vorticity contours in the core regions remain nearly
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Figure 5: Snapshots of the vorticity field Figure 6: Snapshots of the vorticity field
in the core region at the same time as in the surrounding region at the same
Fig.2. time as Fig.2.

elliptical; therefore, the core regions are successfully defined by the procedure described in section
2.2. Fig.6 shows that the surrounding regions consist of the filaments and the weak vorticity region
around the core.

3.2 CONTRIBUTION OF FILAMENTS TO THE AXISYMMETRIZATION OF AN ELLIPTIC
VORTEX

To reveal the axisymmetrization of an elliptic vortex, we focus on the deformations of vorticity
contours in the core region by the vorticity of the core region and the surrounding region. First,
we analyze the radial velocity at the maximum and minimum curvature points of the vorticity
contours. We divide the velocity into two parts: the velocities induced by the vorticity field in the
core region, u, := k x VA 'w,, and by those in the surrounding region, us := k x VA™'w;, where
w, and w; are the vorticity fields in the core region and the surrounding region, respectively. Using
these velocities, we calculate the integral of the velocities with respect to time,

t ¢
A(t) = ] u.(t) - e, dt’, At) = f u(t') - e, dt’,
0 0

where e, is a radial unit vector. Because the vorticity is frozen to the fluid particle for a two-
dimensional incompressible barotropic fluid, the above integrals represent contributions of each
regions to the displacements of the vorticity contour. That is, A and A, are displacements of the
vorticity contour advected by the velocities induced by the core region and the surrounding region,
respectively.

Fig.7 shows the evolution of A, and A at the maximum curvature point of the vorticity contour,
w=6, 7,8 A, for all the contours rapidly decreases in 0 < ¢ < 1.5 and exhibits a relatively small
decrease in 7 < ¢t < 8 As shown in section 3.1, these time intervals correspond to the intervals
during filament formation. At the maximum curvature point, A; and A, are always negative, but the
magnitude of A is small compared with that of A;. On the other hand, As at the minimum curvature
point increases during approximately the same interval when Ay at the maximum curvature point
decreases (Fig.8). This indicates that the surrounding region contributes to the axisymmetrization
of the elliptic vortex. The surrounding region consists of the filaments and the weak vorticity region
around the vortex core. The weak vorticity region, which homogeneously surrounds the vortex core,
does not contribute to the axisymmetrization because the mirror-symmetric vorticity field cannot
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Figure 7: Time evolution of A.(f) and A4(t) at the maximum curvature point.

Figure 8: Time evolution of A.(t) and Ag(t) at the minimum curvature point.

contribute to ¢4, that is, to the axisymmetrization® (Fig.9). The facts that the axisymmetrization
occurrs during filament formation and that the weak vorticity region is almost mirror symmetric
strongly suggest that the filaments are the main cause of the axisymmetrization.

4. CONCLUSION

We have quantitatively discussed the axisymmetrization of an isolated elliptic vortex with a non-
uniform vorticity distribution for a two-dimensional incompressible barotropic fluid. To investigate
the role of filaments in the axisymmetrization of an elliptic vortex, we defined a core and surrounding
regions. We investigated the deformations of the vorticity contours in the vortex core by velocities
induced by the core and the surrounding regions. The deformations of the vorticity contours due
to the surrounding region were significant, particularly when the filaments were forming. This
investigation showed that the filaments substantially contributed to the axisymmetrization of the
elliptic vortex.
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Figure 9: Snapshots of anti-mirror symmetric vorticity fields on the principal axes
of the ellipse with w = 6. The coordinates are rotated so that the major axis of the
ellipse with w = 6 is coincident with y-axis.

These analyses of the contribution of the surrounding region did not reveal which part of the
filaments contributed the most to the axisymmetrization and how they contributed to the axisym-
metrization. A study clarifying these points is currently underway and will be reported in a paper
that is in preparation.

We discussed the role of filaments in the axisymmetrization for the compact-support initial
vorticity distribution. We confirm that the result for the compact-support distribution, which is
monotonically decreasing function with radial directions measured from the center of the vortex
core, also holds for other initial vorticity distributions, such as a Gaussian distribution used by
Kimura and Herring (2001)* and a discontinuous distribution used by Dritschel (1998).' A detailed
analysis of initial distributions will be presented in a paper that is in preparation.
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