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Rossby waves and the
stratospheric Brewer-Dobson
circulation
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Rotating, stratified geofluids are characterized by waves
(especially Rossby and inertia-gravity)

— Waves transfer angular momentum and energy

— For the atmosphere, energy can be radiated to space
but the angular momentum budget is closed

The middle atmosphere is (mainly) dynamically stable,
so forced by waves and damped by radiation

— Circulation is mechanically driven: a refrigerator

The zonal (axisymmetric) flow filters the angular
momentum transfer, inducing differential torques

— Feedback on zonal flow is wave-mean interaction

— The two-way interaction provides mechanisms for
global-scale teleconnections

Often the torques act as a drag, but not always
— Super-rotation is certainly possible



+ ‘Eliassen adjustment’: The instantaneous zonal-mean
response to an imposed torque or radiative heating
Involves a residual circulation to maintain thermal-wind
balance: case shown here is for a negative torque
(arrows depict the induced circulation)
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* |n the extratropics, persistent torques lead to
downward ‘burrowing’ of the mean meridional
circulation; negative torque = poleward flow

d dr U Radiative cooling and surface
T=—u)=u—~+=r drag, which are relaxational,
dt dt d 0 ‘accommodate’ the circulation
(u is absolute velocity)
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* |n the stratosphere, the small thermal inertia means

temperatures follow the Sun: warm at the summer pole

and cold at the winter pole

 Thermal wind balance implies eastward (westerly) flow in
the winter hemisphere, and westward flow in the summer

hemisphere
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 When the flow is westerly, planetary-scale Rossby
waves can propagate into the stratosphere (Charney &
Drazin 1961 JGR), where they break in a hemispheric-
wide ‘surf zone’ (Mclntyre & Palmer 1983 Nature)

PV on 850 K isentropic surface <« This behaviour was argued
to be that of a nonlinear
critical layer (see below)

Critical layers occur where
the wave phase speed
equals the flow speed

—
—




* The “surf zone” in the Canadian Middle Atmosphere
Model, a realistic climate simulation model

— 30-day particle advection at 1000 K (approx 35 km)

 Where the waves break, they exert a torque from the
angular momentum transfer
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For Rossby waves, the momentum deposition is always
negative. For barotropic dynamics, it is easy to show that
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where q is potential vorticity (PV) and F is EP flux

An analogous relation holds for stratified flow (Dickinson
1969 JAS; Andrews & Mclintyre 1976 JAS), although the

zonal-wind response is then non-local (Eliassen 1951
Astrophys. Norv.)

Breaking Rossby waves mix PV downgradient, hence
the induced torque is negative

N.B. In the stratosphere, PV mixing cannot happen
spontaneously



e \Wave-induced torques drive a middle atmosphere
circulation with a strong seasonal dependence

— Mainly from Rossby waves in the stratosphere
— Mainly from gravity waves in the mesosphere
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CMAM results from Beagley et al. (1997 Atmos.-Ocean)
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* This is the origin of the stratospheric “Brewer-Dobson
circulation”, which cools the tropics and warms the poles
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* The BDC raises and cools the tropical tropopause,
and lowers and warms the extratropical tropopause

Stratospheric momentum forcing
20 T T T

Positive forcing
(anti-Rossby

/ waves)

~____— Control case

) 1 [ Negative forcing

(Rossby waves)

height (km)

Iropopause

ol \ . l
-90 —45 0 45 a0
Lotitude

GCM calculations by Thuburn & Craig (2000 JAS)




 The seasonal variation in the BDC leads to a
seasonal variation in lower stratospheric temperature

e Tropical temperatures are lowest in boreal winter,
when the tropical upwelling is the strongest
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Altitude, km

* The seasonal cycle in tropical tropopause temperature
causes a seasonal cycle in dehydration, which is
imprinted on the water vapour entering the stratosphere:
the “water vapour tape recorder” (Mote et al. 1996 JGR)
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« Tropical tropopause temperature also controls
stratospheric water vapour on interannual timescales
H20+2CH4 anomaly 20S—-20N :
- Figure shows
interannual
anomalies in the
3 “tropical tape
recorder” as
seen in HALOE
measurements
from the UARS
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 Radiosonde observations reveal variations in the BDC
associated with El Nino

Regression of DJF
temperature onto
Nino 3.4 index

These stratospheric
features must be
dynamically driven

Free & Seidel (2009
JGR)
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Altitude (km)

« The Brewer-Dobson circulation was originally inferred
from observations of water vapour and ozone

— Dryness of stratosphere implies tropical entry
— Ozone distribution implies poleward motion
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« Transport by the BDC explains the seasonal and
interhemispheric differences in ozone
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« The seasonal cycle of stratospheric variability implies a
seasonal cycle in the Brewer-Dobson circulation

— Midlatitude column ozone anomalies build up through
winter and spring, and decay photochemically during
the quiescent summer (several-month timescale)
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* Forcing of planetary Rossby waves is stronger in the
NH than in the SH, so the Arctic winter is warmer and

more variable than the Antgrctic (summer is quiet)
1979-1997 1955-2000
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« Response of polar temperatures to increasing wave forcing
h, in @ mechanistic model reveals complex dynamics
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* Observations suggest that the upward EP flux depends

in part on the state of the stratosphere

— This challenges the accepted paradigm

Correlation between k=1 variability
In troposphere and stratosphere
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ozone ratio 50°-90°

« Variations in the upward wave forcing (“winter heat
flux®, proportional to vertical EP flux) are associated
with variations in polar downwelling, hence in polar
vortex strength and in polar ozone abundance
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* This inter-annual variability in the polar downwelling is
most pronounced in the NH, and leads to decadal
timescale changes in ozone

Total Ozone (DU)

250

63° 90° Total Ozone Average

-l I llllllllllllllllllllllllllllllllllll l-
L vy . i
i Y » i
5 W NH March ]
i SH October .
L v BUV .
- @ EPTOMS Vv8C 7
— mMETEOR3_V8 .
" mNIMBUS7 V8 .
| x OMI_V8F .
- ¢ Merged -
-l Ly 1 1 1 1 1 111 | I T T TN TN AN TN A N 1 | IS W TN W TN SN TN NN W SN NN NN SN UNNN SN UNNN SN SNNN SN 1 l-
1970 1980 1990 2000 2010
Year

WMO (2011)



* For the Arctic, anomalies in transport and Iin
(temperature-induced) chemical loss act in phase and
contribute equally to the observed ozone variability

(while chlorine loading is high)
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In addition to the “deep” branch of the BDC driven by
planetary-wave drag, there is also a “shallow” branch for
which synoptic-scale wave drag is important
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Height (km)

The importance of synoptic-scale Rossby waves to the
BDC may seem surprising, but the drag from synoptic-
scale waves extends continuously into the subtropical
lower stratosphere
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* The breaking of synoptic-scale Rossby waves on the flank of

the jet is a fundamental phenomenon, which is responsible
for the maintenance of eddy-driven jets

Rossby waves N\
break & dissipate ~ Momentum
divergence

Stimng = oo

convergence

Rossby waves Momentum
break & dissipate divergence

Vallis (2006) zonal velodity



« Just as with stationary planetary waves, the breaking of
synoptic-scale waves occurs in nonlinear critical layers

— The subtropical critical layer in the upper troposphere,
and the midlatitude critical layer in the middle
troposphere

— Here for northern winter; northern summer is similar
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« Don’t you see zonal wave 5-6 ‘cat’s eyes’ here at 21 km in
the NH?

*21.0 km, Day 310, 12:00, Kalman-filter (wave—-no. 15) + lat. lowpass (+/- 2.0 deg)

wo = Figure courtesy
~ ofDirk
Offermann,
University of
Wuppertal
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Summary

Rossby waves propagate from the troposphere into the
stratosphere and provide a negative torque where they
dissipate (‘Eliassen-Palm flux convergence’)

— The waves generally dissipate by breaking sideways in
nonlinear critical layers

Negative torques drive poleward flow: the origin of the
‘Brewer-Dobson circulation’ important for chemical species

Planetary waves propagate deep into the stratosphere
during the winter season, and drive polar downwelling

Synoptic-scale waves propagate into the subtropical lower
stratosphere year-round, and drive a shallow branch of the
BDC

— The tropical upwelling undergoes year-to-year
variations



