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Very important phenomena in geophysics and industry are gravity currents.
We therefore need efficient tools for understanding and prediction.

Why not just solve the problem on a computer? Not practical, because:

1. A full Navier-Stokes simulation of one case takes several weeks of CPU
2. We obtain too much information: speed, pressure, etc. at millions of
points. We need reliable guidelines for the processing of the data.
Consequently, we must develop some simplified “models”

How can this be achieved? What do we learn? How good are the results?



Typical case: “"dam break” of saltwater in freshwater

t = 0, with dam, no motiorjlc t > 0, no dam, with motio:
Density of ambient (yellow) is p5. Density of current (blue) is pc.

No motion appears when p. = pa. A gravity current appears when pe > pa.
First puzzle: the gravity g which acts in vertical direction (-z) drives a flow in

the horizontal direction (x).
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t = 0, with dam, no motion t > 0, no dam, with motion

Density of ambient (yellow) is p5. Density of current (blue) is pc.
No motion appears when p. = pa. A gravity current appears when pe > pa.
First puzzle: the gravity g which acts in vertical direction (-z) drives a flow in

the horizontal direction (x).

Due to g the pressure p is proportional to p and h (layer thickness) There is
Ap O (pc — pa)gh difference over Ax of the dam.

After removal of the dam, the dp/dx drives x motion with speed u.



Typical configurations
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Quick estimates

Driving effect: the “reduced gravity”.
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Pa Pc

g2 =lealg; g¢ = leclo;
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Quick estimates

Driving effect: the “reduced gravity”.

Ap Ap
=— €c=—;
Pa Pc

g2 =lealg; g¢ = leclo;

Define Ap=pc—pa; €a

and

! |AF | H ! !
=—————g=min(g},9:).
max(pa, Pc) g (92,9e)

Boussinesq system |e¢|, |€a| < 1, allows the approximations

pc=pa, and g'=gi~g¢
Lock height hy. IF the mean reduced potential energy of a particle in the

lock (1/2)g’hopa is converted to the kinetic energy (1/2)U?pa, then

The typical speedis U = (g’ho)*/2.



The pressure/buoyancy driving is “balanced” by either inertial, or viscous,

adjustment of the fluid.

The Reynolds number expresses Inertial/Viscous effects

Re- Yt _ v/9’hoho
B

1%

In most cases Re > 1.



Classification

e Constant (fixed)/non-constant volume.

e Inviscid/viscous.

e Boussinesg/non-Boussinesq.

o Homogeneous/stratified ambient.

e Gravity current/intrusion.

o Two-dimensional (2D) rectangular geometry/axisymmetric.

e Rotating/non-rotating frame (and ambient).

o Compositional/particle driven.
The gravity current is a very complex, multi-faced, and parameter-rich
physical manifestation. Difficulties in the flow-field problem: two-fluid, time
dependent, strong variations and instabilities (near the interface), different
scales in x and z directions, etc.

here



How can we proceed?

Suggestion: Let us use approximations and idealizations: sharp interface,

thin layer, fully inviscid (or fully viscous), instantaneous release.

Pessimists say: Hopeless case. No good estimates of approximation errors

are available. The error bounds add up to significant % of solution.

Optimists answer: Let us try and see. Errors may be smaller than the

bounds, and sometimes cancel each other.



Shallow-water (SW) inviscid, Boussinesq model

A2 open surface or top wall
H ‘
u ﬂg’ t) ambient P,
backwall ou,=0
interface dam or lock 3 g
h, z = h(x1) !
 front shock
u(x,t) f
currentP, = — h/v
0 l - X
0 X X, bottom wall

More simplifications:
One layer analysis: there is no motion in the ambient.
“Thin” current hy /Xy < 1. Since the current is thin, we are interested in the

x (not z) changes.



The variables of interest are h(x,t), u(x,t) (averaged). Derive equations:

Continuity equation:
‘lh . Jhu 0
ot = ox

Momentum z: 0 = —dp;/dz — p;ig. Principle: p is continuous at z = h(x,t).
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The variables of interest are h(x,t), u(x,t) (averaged). Derive equations:

Continuity equation:

dh . Jhu 0

ot Ix

Momentum z: 0 = —dp;/dz — p;ig. Principle: p is continuous at z = h(x,t).
Fundamental result % =A QM.

ax X

Momentum x: average the equation over [0,h]. Use previous %r;c

Jdu Ju  Ap oh

ot TYox T o Yax

We obtained a hyperbolic set of 2 PDEs for h(x,t) and u(x,t).
Easy to solve, BUT do we have all the needed boundary conditions?

Initial hand u att =0 ok. u =0 at x =0 ok.
What happens at x = xy(t) ? A discontinuity (shock) may appear.



The SW current

front shock

A< open surface or top wall
H i
u aff’ t) ambient P,
backwall o ou,=0
interface dam or lock | 8
h, z = h(x,t) !

u(x,t)

currentP

0 X, X, bottom wall



Benjamin’s (1968) classical result

For a steady-state long current, in a frame attached to the current.
(@)

H

i i .
w=U/(1-a) ! | P ambie
i 8 i u=U
g T ‘
left

P T

I
| right
1

c h
o | current | 3 u=0

: x
0

Use continuity of volume and flow force balance

H H
/o(pu2+p)|dz:/0 (pu?+p)rdz.
Result: U =Fr(h/H)-h/2.[g']}/?

Fr is a simple function, of order 1 (called “Froude number.”) here

Energy considerations give the restriction h/H < 1/2.



Benjamin theory
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Insight: the previous steady-state analysis is relevant to the nose-shock of a

time-dependent current

(b)

u=U/(I-a) | ' u=U

z — —

I I
left | | right
I I

P B

¢
P current  u =0

B. condition for the nose:  uy = Fr(hy/H)- h,{l/z 912

This closes the SW formulation.



SW tormulation (2D)

Switch to dimensionless variables.

— (a'h1/2. _Xo
U=(g'ho)"% T=73-

{X*,Z*,h*,H*,t*,U*,p*} = {XOXahOZahOhahOHaTt,UU,anZp}'



SW tormulation (2D)

Switch to dimensionless variables.

U=(g'hy)? T=20
u
{X*,Z*,h*,H*,t*,U*,p*} = {XOXahOZahOhahOHaTt,Uu,anZp}'
The scaled (dimensionless) system is
hy u h hx 0
+ = :
Ut 1 u Uy 0
The nose (front) condition needed at x = xy (t) is
h
uy = hy/? Fr(hy/H), and WN < amax ~ 0.5,

where

1.19 (0 < hy/H < 0.075)

Fr(hy/H) =
05HY3h ®  (0.075 <hy/H <1).



See the simplification !

Recall: The full formulation of the problem is the Navier-Stokes equations

@ Continuity of volume
O.v=0;

® Momentum balance
D A
pD—\t/ = —0OP —pg2 +ul?v;

©® Density transport

g—fw-mpzmzp. 2)

Here D/Dt is the “substantial” derivative.
Variables: v{u,v,w}, P, and p functions of x,y,z,t.

A very difficult hyperbolic-parabolic PDEs problem.
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Recall: The full formulation of the problem is the Navier-Stokes equations

@ Continuity of volume
O.v=0;

® Momentum balance
D A
pD—\t/ = —0OP —pg2 +ul?v;

©® Density transport
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Here D/Dt is the “substantial” derivative.

Variables: v{u,v,w}, P, and p functions of x,y,z,t.

A very difficult hyperbolic-parabolic PDEs problem.

The SW model has only two variables, functions of x,t. Much simpler

hyperbolic PDEs problem. But are the results useful? And accurate?



Immediate important results of SW formulation:

e The only free parameter is H = (height of lock)/(height of ambient).

e The initial propagation is with constant speed (2D case).

« A self-similar propagation develops eventually, spread = t#.
B=2/3(2D), B =1/2 (axisym.).

e The transition position to “viscous” phase is predicted (for a given
Reynolds number).

¢ The quantitative details are obtained within small computational effort

(e.g., by finite-difference Lax-Wendroff method, in seconds).



Immediate important results of SW formulation:

e The only free parameter is H = (height of lock)/(height of ambient).

e The initial propagation is with constant speed (2D case).

« A self-similar propagation develops eventually, spread = t#.
B=2/3(2D), B =1/2 (axisym.).

e The transition position to “viscous” phase is predicted (for a given
Reynolds number).

¢ The quantitative details are obtained within small computational effort

(e.g., by finite-difference Lax-Wendroff method, in seconds).

Comparisons to experiments and Navier-Stokes computations show:

excellent qualitative agreement, fair quantitative agreement.



Axisymmetric example

Consider outward (radial) propagation in cylindrical geometry.

Consider two very different experiments:

(1) Hallworth, Ungarish and Huppert (2001). Circular tank of radius 13 m.
(2) Patterson, Simpson, Dalziel and van Heijst (2006). Wedge of 10°, length
2.35m.

The fluids were salt- and fresh-water.

SW theory claims All are Boussinesq, large Re flows.

SW theory predicts: In scaled form both systems are identical. The only free
parameter is H = (height of lock)/(height of ambient).

Scale: r with rg; z with hg.

u with (g’ho)Y/2; t with rp/(g’hg)Y/?



Top view

Uy

>

Full cylinder Wedge (Sector)

Conjecture: The flow variables are h(r,t) and u(r,t).



The experim
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Table of compared experiments

Expt ro | hg H* H g’ Re rv | remark
cm | cm cm cms? | x10%
S1 (100|411 (50112 | 491 6 5.8 | cylinder
S2 | 100 | 77.3 | 80.1| 1.0 | 481 15 7.5 | cylinder
S3 | 100 | 458 | 79.8 | 1.7 | 19.2 14 | 6.8 | cylinder
S7 | 100 | 45.2 | 80.0 | 1.8 | 43.8 20 7.2 | cylinder
P1| 60| 30 30 10| 132 6 6.0 | wedge
P2 60 | 22 30 | 14| 13.2 4 5.4 | wedge
P3 60 | 175 | 30 | 1.7 | 132 3 4.9 | wedge
P4 60 | 9 30 | 3.3 | 13.2 1 3.7 | wedge
P5| 60| 75 30 | 40| 13.2 0.7 | 3.2 | wedge




Weage side view. H =1.7, 1t =0.5,1.5,2,3,4.5

Lab. and NS of Patterson et al 2006.



Weage side view. H =1.7, t =0.5,1.5,2,3,4.5

‘ R Jm— ] (a) SW results Ungarish 2007.
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Lab. and NS of Patterson et al 2006.






Experiments and theory, early times
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Experiments anad theory, later times

S1H=1.2
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Experiments anad theory, later times

5 10 15

—} — S2H=1.
— 4> — S1H=1.2
> — S3H=1.7

—~} — S7H=1.8
—4— — P3H=1.7
X — P5H=4
- N - SWH=1.
— SWH=17

1 ' ‘1'0 — — — SWH=4

Conclusion: SW model predictions confirmed with good confidence.
The formulation covers a wide range of systems.

No adjustable constants were used.



Problem: Intrusions at mid-level of stratified container

(a) Z ®

open surface § l

-H

bottom

Figure 1: Schematic description of the system: (a) geometry after release from a rectangular lock: (b)
density profile in the ambient (note p. = 0.5(py + p,)). In dimensionless form, horizontal and vertical

lengths are scaled with zq and hy, respectively. The subscripts denote: N - nose (or front); a - ambient;



% Wu (1969) made experiments using
H

1

cylinder lock, H =4,

full linear stratification with
0

a

buoyancy frequency

A =1(pp/po —1)g/H*]?

The curve-fitted data produced Wu’s formula

X ] 1+(0.29+0.04) (4 t*)H08+005 (0 < 't <25) (I.CS.)
X0 (1.0340.05) (#t*)0-55+0.02 (3<#t*<25) (PC.S.),

I.C.S. means “initial collapse stage” and P.C.S. means “principal C. S



Wu (1969) made experiments using

b .
cylinder lock, H =4,
] full linear stratification with
0 X
1 buoyancy frequency

A =1(pp/po —1)g/H*]?

The curve-fitted data produced Wu’s formula

X ] 1+(0.29+0.04) (4 t*)H08+005 (0 < 't <25) (I.CS.)
X0 { (1.03+0.05) (_4't*)055+002 (3< Nt <25) (PC.S.),
I.C.S. means “initial collapse stage” and P.C.S. means “principal C. S
This formula was accepted as a general description of intrusions.

Kao (1976), Manins (1976), and Amen and Maxworthy (1980) tried to
extend it, using experiments for rectangular locks and adjustable constants.

This was the accepted “theory”. Simple BUT ....



Crisis

More experimental work was done by
Faust and Plate (1984).

Faust and Plate (1984) summarized:
“intrusions into a linearly stratified
environment behave very differently

from theoretical calculations.”
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REMEDY:
More experimental work was done by

Faust and Plate (1984).

Faust and Plate (1984) summarized:

Extend the SW approach to these
problems. (Ungarish 2005).

“intrusions into a linearly stratified Observation: the Boussinesq

environment behave very differently intrusion is composed of two

from theoretical calculations.” mirror-image boundary currents. With

some care, it is sufficient to solve the
REASON: SW equations for the upper-half only.
Wu's formula is a curve-fit, not a Analytical solutions exist for slumping
physical “model.” The word “theory” is  and self-similar stages.

used too loosely. Note the times

1969-1984-2005



Intrusions at mid-level of container, SW eqs
Use a one-layer approximation. Hydrostatic balances in z direction yield
,0h
Pc=po(l+e)
Pa=po[l+eoc(z)],

Ope _ 9y
% =G [1—a(h).

Scale the dimensional variables (denoted here by asterisks) as follows

{*, 2", h*, ', H*,t*,u*,p"} = {zoz, hoz, hoh, hol, hoH, Tt, U, poll’p},

P J.U
=7

where
e—plz=1), 1" ‘
Pe— pal2 )hug] . [f!ug')mz- T

e
o
1 (1<)

and
A=[1-0(1) =
e {\ﬂ(bl)

The resulting SW equations are
eont.: hy i h h, 0
Uy 0 ‘

A mowm.




Intrusions at mid-level of container, SW eqs
Use a one-layer approximation. Hydrostatic balances in z direction yield
,0h
Pc=po(l+e)
pa=po[l+eoc(z)],

[1—c(h)].

& _ o0
50 = P95
Scale the dimensional variables (denoted here by asterisks) as follows
{=*, 2", 0", ', H* ,t*,u*, 5"} = {0z, hoz, hoh, lm[.me.Tt.Uu‘p(,U{u},
Nose condition :
where
= = 1/2 - _ 1/2 1/2
U= | pa(z-l)hug = (hog 2. =5 un =Frh“ < [1=A(hy)]7“
Po A U
and where
e 1 (<Y
A=[t-o) = 1 rhn
V(> 1) A(hN):—/ o(z)dz.
hN 0

The resulting SW equations are
cont.: hy Uu h hy 0
Uy 0 ‘

A mowm.




Does this resolve the dilemma of Faust and Plate ?

Faustd Plake (‘5?“’) vamjn'awmw
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SW theory predicts:
yp saled
constant uy w;{-u

Free parameter: | /hg ,&

Agrees with experiment.




Does this resolve the dilemma of Faust and Plate ?
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Agrees with experiment. 3
v

Very good agreement for the whole range.




SW, full depth stratification, slumping

The stratified fluid supports waves of max. speed A4/ H* /.

Question: is the intrusion faster or slower?



SW, full depth stratification, slumping

The stratified fluid supports waves of max. speed A4/ H* /.

Question: is the intrusion faster or slower?

SW model analytical results for rectangular lock. uy scaled with .4 hg.

0.9

0.8

RREN F”Ris REREY

The propagation is always slower than the wave (sub-critical).



SW, Navier-Stokes and experiments, H =

Anen & Maxwe «t\du\ (1380)
Se Rovij @)M) cnj—«:\mmt«on

T * 2H'
%1 L 3
%s scale. W= Wh,

Ama ‘Aw (uu,tv constamd it

lr‘kaxf Mg Lz,gcj oy (H)

J— 5w

+ 4

Figure & Distance of propagution as & funetion of time for conbgurtions with & = 1
reults of experiments of Amen asd Maxvorthy, denated A & quuu;,- 1) and of
Hood] (with Ayfry = 0.5); the correponding NS simulations; and SW model,

W=oh ; T= ’&" j («’(;a%’;-)



Navier-Stokes, H = 2.27, iIsopycnals, hg

Simulates Run 111 of Amen-Maxworthy.



Navier-Stokes, H = 2.27, iIsopycnals, hg

Simulates Run 111 of Amen-Maxworthy.

Note the wave-head interaction
in second and third frames,
t=4and 6.

But the upstream

perturbation is =~ 0.



SW moadel proves: Wu’s behavior Is not universal !

fI){‘H.wLmu. betaseam

u%um&m‘b& wmi fu}u.mg_ufm\r Focks

e

W, L,
1e :t, i

D ]
' t
Figare 6 S resulws for f = 4 Wa's cylindrical lock configuration {soiid line) amd rect

ungalas lock counterpart (aahed line)

Note : mmax Ak y amd tl'u

ave He aome o bodl  cases



Similarity solution for 2D intrusion

The SW equations for S = 1 and constant Fr are satisfied by

xn(t) =K(t+7)"Y% u=xn(t)y; h=(0>+y?)"x(1),

2
where y = x/xy(t), bzzﬁ—l, K,y constants

and the upper dot means differentiation in time.

Note difference from the homogeneous ambient case
xn ~ 173, h~ (CHy?)%(1))

Conservation of volume gives

K = 1.362 for cylindrical lock and 1.537 for rectangular lock.



Similarity solution for 2D intrusion

The SW equations for S = 1 and constant Fr are satisfied by

xn(t) =K(t+7)"Y% u=xn(t)y; h=(0>+y?)"x(1),

2
where y = x/xy(t), bzzﬁ—l, K,y constants

and the upper dot means differentiation in time.

Note difference from the homogeneous ambient case
xn ~ 173, h~ (CHy?)%(1))

Conservation of volume gives
K = 1.362 for cylindrical lock and 1.537 for rectangular lock.

Conclusion: SW similarity prediction agrees well with Wu’s correlation

XN = (1.03+0.05) t 095 002 (for t > 3)



WuU'’s case: compare SW results to Wu's formula

UL WLLEULA LIS (UL LI L L N

20

o
(&)
2
o

The disagreement for “initial” and “principal” collapse stages is within the

reported error bounds of Wu’s formula.



Mid-level 2D Intrusion In linear stratification

Slumping uy (scaled with _.4"'hg) SW theory and experiments
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Slumping uy (scaled with _.4"'hg) SW theory and experiments
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The scatter suggests that the errors are in experiments, not in the theory.



Mid-level 2D Intrusion In linear stratification

Slumping uy (scaled with _.4"'hg) SW theory and experiments

sSw

A&M

Rooij
Maxetal(2002)
HHU-05

Wu (maximum)

OHXo)»

I ol

The scatter suggests that the errors are in experiments, not in the theory.

Most experiments are old, and for small H.



Axisymmetric intrusion In linear stratification

The 2D formulation was extended to cylindrical motion in r,z coordinates.

A similarity solution was obtained (Ungarish and Zemach 2007).
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(In homogeneous case, ry = kt1/2).
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P prome | Important problem:
8

Plume turns into intrusion.

neutral

buoyancy

Relevant to propagation of
volcanic clouds (Suzuki and

Koyaguchi 2009)

Pl O
Box-model: approximate the intrusion as a cylinder box of height 2hy(t).

Volume conservation:  Qt = zr (t)[2hy (t)];
Front condition 9N — \%WhN
Result: ry(t) = C(#'Q)Y3t%/3,

Predicted C = 0.59.



Axisymmetric intrusion with Influx

p, profile

| Important problem:

Plume turns into intrusion.

neutral

Relevant to propagation of
volcanic clouds (Suzuki and

Koyaguchi 2009)

Volume conservation:  Qt = zr (t)[2hy (t)];

Front condition 9N — \%WhN

Result: ry(t) = C(#'Q)Y3t%/3,

Predicted C = 0.59.

Field measurements: spread with t2/3, but C ~ 0.40.

The buoyancy frequency ./ is known in atmosphere and oceans. Q is a

property of the phenomenon (i.e., volcanic eruption).



Conclusions

e The “thin layer” models provide useful and reliable information about
the motion of gravity currents and intrusions.

e When properly scaled, the main propagation features can be reduced
to simple equations which depend on a small number of dimensionless
parameters. There still are open topics under research, e.g., the
non-Boussinesq systems.

e The “models” work well when they are based on reliable physical
mechanisms and are expressed in clear-cut balance equations with
realistic initial conditions.

o “Extensions” of observations from one range of parameters (or
geometry) to another may be misleading. One must be careful not to
confuse between predictive governing equations and curve-fit
equations. A good model is valid over a range of parameters, without

adjustable constants.



Conclusions -continued

e |t is actually amazing that complex physical flow-fields can be reduced
to simple prediction equations. The reason is that the process occurs in
some asymptotic range of the involved parameters. Many of the
“complex” components are less important than observations and
intuition suggest. The dominant governing balances are simple.

GOOD PHYSICAL INSIGHTS CAN PRODUCE SIMPLE YET
POWERFUL MODELS. THE OPPOSITE IS NOT TRUE.

The gravity current (intrusion) is an example of such a process.
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More examples: (1) spin-up from rest of a fluid; (2) the drag on a particle
which moves along the axis of a rotating fluid; (3) settling of a

suspension in an inclined tank (the Boycott effect).



Conclusions -continued

e |t is actually amazing that complex physical flow-fields can be reduced
to simple prediction equations. The reason is that the process occurs in
some asymptotic range of the involved parameters. Many of the
“complex” components are less important than observations and
intuition suggest. The dominant governing balances are simple.

GOOD PHYSICAL INSIGHTS CAN PRODUCE SIMPLE YET
POWERFUL MODELS. THE OPPOSITE IS NOT TRUE.

The gravity current (intrusion) is an example of such a process.

More examples: (1) spin-up from rest of a fluid; (2) the drag on a particle
which moves along the axis of a rotating fluid; (3) settling of a

suspension in an inclined tank (the Boycott effect).

The derivation of simple insightful models is one of the big challenges
and benefits of the physical sciences. Let us hope that the computers

will not make it redundant.
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In ideal conditions pressure on streamline satisfies Bernoulli’'s eq.
i 1 2 1 2
Pi(2) +5P1(2)ui7(2) +p1(2)8(2)9 = pr(z = 8(2)) +5p(2)U" (h<z <H)

where the upperscript i denotes ideal energy-conserving flow. For the
non-ideal flow, following Benjamin, we introduce the head loss on a

streamline
A(z) = |pi(2) ~Pi(2)] /(pog) (h<z <H).
Define the average head loss

_ 1 H



Steady current dissipation
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the flow-force balance eq.

After algebra and reductions, we can express the flow-force balance as

r=-ay/31

follows. Let

f(y) =
1. 1,
1-a+a(2—a)ycoty+ (aycoty) +y2— 2-a)(1-5)- 52

=0. (3)

The root(s) of this equation, for given a and S, provide the desired solution
Fr(a,S)=0=(1—a)(S/a)/?/y.



Max et al (2002) Table

392 T. Maxworthy, L. Leflich, J. E. Simpson and E. H. Meiburg
Appendix A
The experimental parameters are given in table L

Bapt bfH AR=L/M  py pe P N Ne R Fr NT. X /h
1273 2 1032 1035 1004 1351 1421 1107 0255 24 .18

20025 2 L0353 lo4s 1004 1574 le3d 1414 0375 557 1806
3025 2 L03s 180 1005 1397 25352 2833 Q637 187 1787
4 15 4 Lo 1070 1005 1593 2057 Le67 0317 161 1551
5015 4 Lo37 LU9 1003 1480 2750 5412 0565 9.2 1589
6 13 4 L34 lovs 1004 1388 2151 2367 0438 124 1629
YRR Y] 4 L34 lo6s 1004 1398 1993 2033 Q375 129 1451
g 13 4 L0S3 1037 1005 1550 1445 1143 Q182 127 693
9 s 4 L0335 1040 1005 1350 1702 1580 Q200 1§ 1566
10 15 4 L3 lo4s 1003 1467 Lless 1273 Q232 176 1225
u 15 4 L0534 L34 1003 1422 1422 1000 QI31 9% 388
1214 4 L03s 1048 1004 1421 1703 1435 Q260 171 1340
1524 4 Lo64 1089 1008 1007 2433 Le20 0437 166 10488
1420 2 Loes L1390 1008 1932 2917 2280 Q555 155 1200
15 15 4 LDAS 1084 1006 1958 25390 1450 0287 19 1636
16 15 4 Lo64 1072 1006 1042 2080 Li47 Q190 155 B84
17 14 4 L067 L2 1005 2001 2638 L1738 0327 106 1023
JEE V] 4 Logs LI63 1008 1945 35170 2655 Q463 133 1847
9 154 4 LOAS 1OS8 1007 1941 2294 1397 0264 196 1552
0 1y 4 Lo6s L1122 1006 1058 2746 1066 0379 153 1740
21 15 4 L067 1082 1006 2000 2235 1249 Q233 104 727
2 15 4 L067 1OW 1006 2000 2181 L18Y Q210 142 895
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