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Note: we shall omit the mathematical details as much as possible.
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Introduction/Motivation
“Gravity current” is the name of common effect: one fluid moves in

horizontal direction into another fluid because the densities are different.

Very important phenomena in geophysics and industry are gravity currents.

We therefore need efficient tools for understanding and prediction.

Why not just solve the problem on a computer? Not practical, because:

1. A full Navier-Stokes simulation of one case takes several weeks of CPU

2. We obtain too much information: speed, pressure, etc. at millions of

points. We need reliable guidelines for the processing of the data.

Consequently, we must develop some simplified “models”

How can this be achieved? What do we learn? How good are the results?
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Typical case: “dam break” of saltwater in freshwater

t = 0, with dam, no motion t > 0, no dam, with motion

Density of ambient (yellow) is ρa. Density of current (blue) is ρc .

No motion appears when ρc = ρa. A gravity current appears when ρc > ρa.

First puzzle: the gravity g which acts in vertical direction (-z) drives a flow in

the horizontal direction (x).

Due to g the pressure p is proportional to ρ and h (layer thickness) There is

∆p ∝ (ρc −ρa)gh difference over ∆x of the dam.

After removal of the dam, the ∂p/∂x drives x motion with speed u.
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Typical configurations



Quick estimates

Driving effect: the “reduced gravity”.

Define ∆ρ = ρc −ρa; ε a =
∆ρ

ρa
; ε c =

∆ρ

ρc
;

g′a = |ε a|g; g′c = |ε c |g;

and

g′ =
|∆ρ|

max(ρa,ρc)
g = min(g′a,g

′
c).

Boussinesq system |ε c |, |ε a| � 1, allows the approximations

ρc = ρa, and g′ = g′a ≈ g′c

Lock height h0. IF the mean reduced potential energy of a particle in the

lock (1/2)g′h0ρa is converted to the kinetic energy (1/2)U2ρa, then

The typical speed is U = (g′h0)
1/2.
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The pressure/buoyancy driving is “balanced” by either inertial, or viscous,

adjustment of the fluid.

The Reynolds number expresses Inertial/Viscous effects

Re =
UL
ν

=

√
g′h0h0

ν
.

In most cases Re � 1.



Classification

• Constant (fixed)/non-constant volume.

• Inviscid/viscous.

• Boussinesq/non-Boussinesq.

• Homogeneous/stratified ambient.

• Gravity current/intrusion.

• Two-dimensional (2D) rectangular geometry/axisymmetric.

• Rotating/non-rotating frame (and ambient).

• Compositional/particle driven.

The gravity current is a very complex, multi-faced, and parameter-rich

physical manifestation. Difficulties in the flow-field problem: two-fluid, time

dependent, strong variations and instabilities (near the interface), different

scales in x and z directions, etc.

here



How can we proceed?

Suggestion: Let us use approximations and idealizations: sharp interface,

thin layer, fully inviscid (or fully viscous), instantaneous release.

Pessimists say: Hopeless case. No good estimates of approximation errors

are available. The error bounds add up to significant % of solution.

Optimists answer: Let us try and see. Errors may be smaller than the

bounds, and sometimes cancel each other.



Shallow-water (SW) inviscid, Boussinesq model
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More simplifications:

One layer analysis: there is no motion in the ambient.

“Thin” current hN/xN � 1. Since the current is thin, we are interested in the

x (not z) changes.



The variables of interest are h(x , t), u(x , t) (averaged). Derive equations:

Continuity equation:
∂h
∂ t

+
∂hu
∂x

= 0.

Momentum z: 0 =−∂pi/∂z−ρig. Principle: p is continuous at z = h(x , t).

Fundamental result
∂pc

∂x
= ∆ρg

∂h(x , t)
∂x

.

Momentum x : average the equation over [0,h]. Use previous ∂pc
∂x .

∂u
∂ t

+u
∂u
∂x

=−∆ρ

ρc
g

∂h
∂x

.

We obtained a hyperbolic set of 2 PDEs for h(x , t) and u(x , t).

Easy to solve, BUT do we have all the needed boundary conditions?

Initial h and u at t = 0 ok. u = 0 at x = 0 ok.

What happens at x = xN(t) ? A discontinuity (shock) may appear.
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The SW current
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Benjamin’s (1968) classical result

For a steady-state long current, in a frame attached to the current.
(a)

ρ

ρ

u = 0
0 x

H

right

u   =  U

left

g

O

z

current 
c h

u =  U / (1−a) a ambient 

Use continuity of volume and flow force balance∫ H

0
(ρu2 +p)ldz =

∫ H

0
(ρu2 +p)r dz.

Result: U = Fr(h/H) ·h1/2 · [g′]1/2

Fr is a simple function, of order 1 (called “Froude number.”) here

Energy considerations give the restriction h/H ≤ 1/2.



a = hN / H

Fr

0 0.1 0.2 0.3 0.4 0.5

0.6

0.8

1

1.2

1.4

Benjamin theory

Huppert-Simpson empirical

U = Fr(h/H) ·h1/2 · [g′]1/2



Insight: the previous steady-state analysis is relevant to the nose-shock of a

time-dependent current

ρ

ρ

(b)

u = 00 x

H
ambient 

u   =  U

current 
c

rightleft

g

a

h

z
u =  U / (1−a)

 O

B. condition for the nose: uN = Fr(hN/H) ·h1/2
N · [g′]1/2

This closes the SW formulation.



SW formulation (2D)

Switch to dimensionless variables.

U = (g′h0)
1/2; T =

x0

U
.

{x∗,z∗,h∗,H∗, t∗,u∗,p∗}= {x0x ,h0z,h0h,h0H,Tt ,Uu,ρaU2p}.

The scaled (dimensionless) system is ht

ut

+

 u h

1 u

 hx

ux

 =

 0

0

 .

The nose (front) condition needed at x = xN(t) is

uN = h1/2
N Fr(hN/H), and

hN

H
≤ amax ≈ 0.5,

where

Fr(hN/H) =

 1.19 (0≤ hN/H < 0.075)

0.5H1/3h−1/3
N (0.075≤ hN/H ≤ 1).
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See the simplification !

Recall: The full formulation of the problem is the Navier-Stokes equations

1 Continuity of volume

∇ ·v = 0;

2 Momentum balance

ρ
Dv
Dt

=−∇P−ρgẑ + µ∇2v;

3 Density transport
∂ρ

∂ t
+v ·∇ρ = κ∇2

ρ. (2)

Here D/Dt is the “substantial” derivative.

Variables: v{u,v ,w}, P, and ρ functions of x ,y ,z, t .

A very difficult hyperbolic-parabolic PDEs problem.

The SW model has only two variables, functions of x , t . Much simpler

hyperbolic PDEs problem. But are the results useful? And accurate?
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Immediate important results of SW formulation:

• The only free parameter is H = (height of lock)/(height of ambient).

• The initial propagation is with constant speed (2D case).

• A self-similar propagation develops eventually, spread = tβ .

β = 2/3 (2D), β = 1/2 (axisym.).

• The transition position to “viscous” phase is predicted (for a given

Reynolds number).

• The quantitative details are obtained within small computational effort

(e.g., by finite-difference Lax-Wendroff method, in seconds).

Comparisons to experiments and Navier-Stokes computations show:

excellent qualitative agreement, fair quantitative agreement.
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Axisymmetric example

Consider outward (radial) propagation in cylindrical geometry.

Consider two very different experiments:

(1) Hallworth, Ungarish and Huppert (2001). Circular tank of radius 13 m.

(2) Patterson, Simpson, Dalziel and van Heijst (2006). Wedge of 10◦, length

2.35 m.

The fluids were salt- and fresh-water.

SW theory claims All are Boussinesq, large Re flows.

SW theory predicts: In scaled form both systems are identical. The only free

parameter is H = (height of lock)/(height of ambient).

Scale: r with r0; z with h0.

u with (g′h0)
1/2; t with r0/(g′h0)

1/2



Top view

Full cylinder Wedge (Sector)

Conjecture: The flow variables are h(r , t) and u(r , t).



The experimental tank at Coriolis lab. Grenoble



Table of compared experiments

Expt r0 h0 H∗ H g′ Re rV remark

cm cm cm cms−2 ×104

S1 100 41.1 50.1 1.2 4.91 6 5.8 cylinder

S2 100 77.3 80.1 1.0 4.81 15 7.5 cylinder

S3 100 45.8 79.8 1.7 19.2 14 6.8 cylinder

S7 100 45.2 80.0 1.8 43.8 20 7.2 cylinder

P1 60 30 30 1.0 13.2 6 6.0 wedge

P2 60 22 30 1.4 13.2 4 5.4 wedge

P3 60 17.5 30 1.7 13.2 3 4.9 wedge

P4 60 9 30 3.3 13.2 1 3.7 wedge

P5 60 7.5 30 4.0 13.2 0.7 3.2 wedge



Wedge side view. H = 1.7, t = 0.5,1.5,2,3,4.5

xxx

Lab. and NS of Patterson et al 2006.

SW results Ungarish 2007.
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Experiments and theory, early times
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Experiments and theory, later times
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Conclusion: SW model predictions confirmed with good confidence.

The formulation covers a wide range of systems.

No adjustable constants were used.
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Problem: Intrusions at mid-level of stratified container



Wu’s “model”
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Wu (1969) made experiments using

cylinder lock, H = 4,

full linear stratification with

buoyancy frequency

N = [(ρb/ρo−1)g/H∗]1/2

The curve-fitted data produced Wu’s formula

x∗N
x0

=

 1+(0.29±0.04)(N t∗)1.08±0.05 (0≤N t∗ ≤ 2.5) (I.C.S.)

(1.03±0.05)(N t∗)0.55±0.02 (3≤N t∗ ≤ 25) (P.C.S.),

I.C.S. means “initial collapse stage” and P.C.S. means “principal C. S .”

This formula was accepted as a general description of intrusions.

Kao (1976), Manins (1976), and Amen and Maxworthy (1980) tried to

extend it, using experiments for rectangular locks and adjustable constants.

This was the accepted “theory”. Simple BUT ....
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Crisis

More experimental work was done by

Faust and Plate (1984).

Faust and Plate (1984) summarized:

“intrusions into a linearly stratified

environment behave very differently

from theoretical calculations.”

REASON:

Wu’s formula is a curve-fit, not a

physical “model.” The word “theory” is

used too loosely.

REMEDY:

Extend the SW approach to these

problems. (Ungarish 2005).

Observation: the Boussinesq

intrusion is composed of two

mirror-image boundary currents. With

some care, it is sufficient to solve the

SW equations for the upper-half only.

Analytical solutions exist for slumping

and self-similar stages.

Note the times

1969-1984-2005
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Note the times

1969-1984-2005
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Intrusions at mid-level of container, SW eqs

ρc = ρo(1+ ε )

ρa = ρo [1+ ε σ(z)] ,

Nose condition :

uN = Frh1/2
N ×[1−Λ(hN)]1/2 A ,

where

Λ(hN) =
1

hN

∫ hN

0
σ(z)dz.
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Does this resolve the dilemma of Faust and Plate ?

SW theory predicts:

constant uN

Free parameter: l/h0

Agrees with experiment.

Very good agreement for the whole range.
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SW, full depth stratification, slumping

The stratified fluid supports waves of max. speed N H∗/π.

Question: is the intrusion faster or slower?

SW model analytical results for rectangular lock. uN scaled with N h0.
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SW, Navier-Stokes and experiments, H = 1



Navier-Stokes, H = 2.27, isopycnals, h0/x0 = 0.33

Simulates Run 111 of Amen-Maxworthy.

Note the wave-head interaction

in second and third frames,

t = 4 and 6.

But the upstream

perturbation is ≈ 0.
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SW model proves: Wu’s behavior is not universal !



Similarity solution for 2D intrusion

The SW equations for S = 1 and constant Fr are satisfied by

xN(t) = K (t + γ)1/2; u = ẋN(t)y ; h = (b2 +y2)1/2 ẋN(t),

where y = x/xN(t), b2 =
2

Fr2 −1, K ,γ constants

and the upper dot means differentiation in time.

Note difference from the homogeneous ambient case

xN ∼ t2/3, h ∼ (C +y2) ẋ2
N(t))

Conservation of volume gives

K = 1.362 for cylindrical lock and 1.537 for rectangular lock.

Conclusion: SW similarity prediction agrees well with Wu’s correlation

xN = (1.03±0.05) t 0.55 ±0.02 (for t > 3)

.
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N(t))

Conservation of volume gives

K = 1.362 for cylindrical lock and 1.537 for rectangular lock.

Conclusion: SW similarity prediction agrees well with Wu’s correlation

xN = (1.03±0.05) t 0.55 ±0.02 (for t > 3)

.



Wu’s case: compare SW results to Wu’s formula
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The disagreement for “initial” and “principal” collapse stages is within the

reported error bounds of Wu’s formula.



Mid-level 2D intrusion in linear stratification
Slumping uN (scaled with N h0) SW theory and experiments
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Most experiments are old, and for small H.
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Axisymmetric intrusion in linear stratification

The 2D formulation was extended to cylindrical motion in r ,z coordinates.

A similarity solution was obtained (Ungarish and Zemach 2007).

The propagation is rN = Kt1/3.

(In homogeneous case, rN = kt1/2).

Peculiar unexpected behavior:

the intruding fluid is in a ring (torus) of

constant ratio of inner to outer radius.

The inner region is a “dry spot”.
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Axisymmetric intrusion with influx
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Important problem:

Plume turns into intrusion.

Relevant to propagation of

volcanic clouds (Suzuki and

Koyaguchi 2009)

Box-model: approximate the intrusion as a cylinder box of height 2hN(t).

Volume conservation: Qt = πr2
N(t)[2hN(t)];

Front condition drN
dt = Fr√

2
N hN

Result: rN(t) = C(N Q)1/3t2/3.

Predicted C = 0.59.

Field measurements: spread with t2/3, but C ≈ 0.40.

The buoyancy frequency N is known in atmosphere and oceans. Q is a

property of the phenomenon (i.e., volcanic eruption).



Axisymmetric intrusion with influx
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Important problem:

Plume turns into intrusion.

Relevant to propagation of

volcanic clouds (Suzuki and

Koyaguchi 2009)

Box-model: approximate the intrusion as a cylinder box of height 2hN(t).

Volume conservation: Qt = πr2
N(t)[2hN(t)];

Front condition drN
dt = Fr√

2
N hN

Result: rN(t) = C(N Q)1/3t2/3.

Predicted C = 0.59.

Field measurements: spread with t2/3, but C ≈ 0.40.

The buoyancy frequency N is known in atmosphere and oceans. Q is a

property of the phenomenon (i.e., volcanic eruption).
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Plume turns into intrusion.

Relevant to propagation of

volcanic clouds (Suzuki and

Koyaguchi 2009)

Box-model: approximate the intrusion as a cylinder box of height 2hN(t).

Volume conservation: Qt = πr2
N(t)[2hN(t)];

Front condition drN
dt = Fr√

2
N hN

Result: rN(t) = C(N Q)1/3t2/3.

Predicted C = 0.59.

Field measurements: spread with t2/3, but C ≈ 0.40.

The buoyancy frequency N is known in atmosphere and oceans. Q is a

property of the phenomenon (i.e., volcanic eruption).



Conclusions

• The “thin layer” models provide useful and reliable information about

the motion of gravity currents and intrusions.

• When properly scaled, the main propagation features can be reduced

to simple equations which depend on a small number of dimensionless

parameters. There still are open topics under research, e.g., the

non-Boussinesq systems.

• The “models” work well when they are based on reliable physical

mechanisms and are expressed in clear-cut balance equations with

realistic initial conditions.

• “Extensions” of observations from one range of parameters (or

geometry) to another may be misleading. One must be careful not to

confuse between predictive governing equations and curve-fit

equations. A good model is valid over a range of parameters, without

adjustable constants.



Conclusions -continued

• It is actually amazing that complex physical flow-fields can be reduced

to simple prediction equations. The reason is that the process occurs in

some asymptotic range of the involved parameters. Many of the

“complex” components are less important than observations and

intuition suggest. The dominant governing balances are simple.

GOOD PHYSICAL INSIGHTS CAN PRODUCE SIMPLE YET

POWERFUL MODELS. THE OPPOSITE IS NOT TRUE.

The gravity current (intrusion) is an example of such a process.

More examples: (1) spin-up from rest of a fluid; (2) the drag on a particle

which moves along the axis of a rotating fluid; (3) settling of a

suspension in an inclined tank (the Boycott effect).

The derivation of simple insightful models is one of the big challenges

and benefits of the physical sciences. Let us hope that the computers

will not make it redundant.
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and benefits of the physical sciences. Let us hope that the computers

will not make it redundant.
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State of the art S = 0, Klemp et al (1994)



Dissipation

In ideal conditions pressure on streamline satisfies Bernoulli’s eq.

pi
l (z)+

1
2

ρl(z)u2
l (z)+ρl(z)δl(z)g = pr (z−δl(z))+

1
2

ρl(z)U2 (h ≤ z ≤ H)

where the upperscript i denotes ideal energy-conserving flow. For the

non-ideal flow, following Benjamin, we introduce the head loss on a

streamline

∆(z) =
[
pi

l (z)−pl(z)
]
/(ρog′) (h ≤ z ≤ H).

Define the average head loss

∆ =
1

H−h

∫ H

h
∆(z)dz.



Steady current dissipation
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the flow-force balance eq.

After algebra and reductions, we can express the flow-force balance as

follows. Let

γ = (1−a)

√
S
a

1

Û

f (γ) =

1−a+a(2−a)γ cotγ +(aγ cotγ)2 + γ
2 a

1−a

[
(2−a)(1− 1

S
)− 1

3
a2

]
= 0. (3)

The root(s) of this equation, for given a and S, provide the desired solution

Fr(a,S) = Û = (1−a)(S/a)1/2/γ .
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