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Jupiter’s metallic hydrogen region

• The origin of the magnetic field/dynamo action
– poorly known in data

• How to infer the deep interior dynamics? 
– through the magnetic field:  

• pre-Juno (n < 4):  strong, predominantly axial 
dipole, secular variation?

• post-Juno (n < 10 and more?): closest as ever to 
a dynamo region:  localized patches

– through any oscillations/waves? 
• an electrically-conducting, low-viscous fluid 

in a rapidly-rotating spherical shell 
permeated by the magnetic field 
– Lorentz/Coriolis = O(1)?
– the rotating MHD hosts a variety of waves

~

Predicted internal structure
(Guillot 1999)

Br inferred at surface 0.96 RJ 
(JRM09: Connerney et al. 2018)

the amount of heavy elements (that is, any
species other than hydrogen and helium) that
the planets hold and has direct consequences
for their evolution, as gravitational energy is
transformed into heat during helium sedimen-
tation (18). However, because any H-He
phase separation is expected near the molec-
ular-to-metallic transition of hydrogen (19), it
is convenient to equate the helium-poor and
helium-rich regions with the molecular and
metallic regions, respectively.

Another important feature of present-day
models of Jupiter and Saturn is the assump-
tion that the molecular and metallic regions
are quasi-homogeneous. This is because the
planets emit significant intrinsic heat fluxes,
and are therefore hot, fluid, and mainly con-
vective (18, 20). The assumption probably
breaks down at several locations (21), as
follows: (i) Where a minimum in the mean
radiative opacities of the fluid at temperatures
of 1300 to 1800 K (22) probably yields the
presence of a radiative region in Jupiter and
possibly Saturn (23). In such a radiative zone,
a variation of chemical abundance is in prin-
ciple possible, either through gravitational
settling or through the slow mixing of mate-
rial that struck the planet after its formation.
Gravitational settling is expected to be small
because it is inhibited by turbulent diffusion
(24). Helium (and tentatively any late supply
of heavy elements to the outermost layers)
should be able to sink through the radiative
zone thanks to a salt-finger type of instability
(25), thus ensuring an almost uniform chem-
ical composition of the radiative zone. (ii) In
the region of varying helium concentration,
in which convection may be suppressed. The
extent of this inhomogeneous region (Fig. 1)
is estimated from fully ionized phase separa-
tion models (19). In reality, the inhomoge-
neous region could be narrower or wider. It is
not included in any interior models so far, but
this seems justified because the gravitational
moments only provide constraints on quanti-
ties that are averaged over relatively extended
regions. More important, this region could be
a relatively efficient barrier to the mixing of
minor species, because they would have to be
transported by slow diffusion processes. The
same would occur at the boundary of a first-
order transition from the molecular to the
metallic phase (18).

Interior models of Jupiter and Saturn are
calculated by solving the standard quasi-hy-
drostatic differential equations, including the
rotational potential calculated within the the-
ory of figures (26). In recent calculations,
only models that match all observational con-
straints are considered. Uncertainties in the
equation of state, surface temperature, opac-
ities, internal rotation, and observational error
bars on the gravitational moments are taken
into account to determine the allowed range
of internal compositions of these planets. The

space of parameters is then extensively stud-
ied within the three-layer assumption. Addi-
tional constraints are provided by planetary
evolution calculations, because they should
yield model ages that are in agreement with
that of the solar system (23). A critical im-
provement of the evolutionary models lies in
the ability to account for helium differentia-
tion, because it can considerably slow down
the contraction and cooling of a given planet
(27). In fact, helium sedimentation is re-
quired to explain Saturn’s intrinsic heat flux
and may be significant in Jupiter as well. The
characteristics of typical Jupiter and Saturn
models are shown in Fig. 1, including corre-
sponding uncertainties in the temperature
profiles.

The resulting constraints on the enrich-
ment in heavy elements of Jupiter and Sat-
urn’s metallic regions relative to solar com-
position (Fig. 2) are weak. However, the en-
richments of the molecular regions can be
usefully compared to other observations. Ga-
lileo probe measurements are compatible
with an enrichment of Jupiter’s deep atmo-
sphere [pressure (P) ! 15 bar] of two to four
times the solar values in C, N, and S (28). The
Galileo probe results are thus consistent with
an abundance of major gases [except helium,
neon (16), and water] that is two to four times
larger than in the sun, which is in agreement
with interior models using the new helium
mixing ratio but not the one derived from
Voyager data (Fig. 2). The lack of abundant
water in the Galileo measurements is thought
to be due to jovian meteorology, and its bulk

abundance is therefore still unknown (28,
29). On the basis of the Galileo measure-
ments, interior models also rule out water
abundances larger than 10 times solar in Ju-
piter’s deep atmosphere. In Saturn, spectro-
scopic measurements indicate enrichments of
CH4 on the order of three to five times solar
(30). The lower measured abundance of NH3

(Fig. 2) is certainly due to condensation, be-
cause the planet is cooler than Jupiter. The
global enrichments calculated with the Voy-
ager helium mass mixing ratio (15) are in-
compatible with the observed CH4 abundance
(Fig. 2). Instead, static and evolutionary mod-
els favor a higher value of Y/(X ! Y) "
0.11 # 0.25 (23, 27).

Table 1 gives the total mass of heavy
elements in Jupiter and Saturn and shows
how they are distributed as core mass in the
metallic and molecular envelopes. It is not
required that Jupiter have a central core in
order to fit the gravitational moments, but
that solution is not the preferred one because
it implies a rather extreme equation of state
and also yields high heavy-element enrich-
ments (in the upper range of Fig. 2). In any
case, Jupiter’s core must be smaller than 10
Earth masses (MQ). Furthermore, it is gener-
ally found that Saturn has a bigger core than
Jupiter, but the constraints are relatively
weak because some of the material in the
deep metallic envelope could be accounted
for as core mass, and vice versa. It is impor-
tant to note that heavy elements in Jupiter’s
and Saturn’s molecular regions, and some of
those in their metallic regions, were probably

Fig. 1. Schematic rep-
resentation of the in-
teriors of Jupiter, Sat-
urn, Uranus, and Nep-
tune. The hashed re-
gion indicates a possi-
ble radiative zone [in
Jupiter, it corresponds
to P $ 0.15 to 0.6
GPa, T $ 1450 to
1900 K, and R$ 0.990
to 0.984 RJ; in Saturn,
it is located around P
$ 0.5 GPa, T $ 1700
K, and R $ 0.965 RS,
but it is probably very
marginal (23)]. The
range of temperatures
for Jupiter and Saturn
is for models neglect-
ing the presence of
the inhomogeneous re-
gion. Helium mass mix-
ing ratios Y are indi-
cated. In the case of
Saturn, it is assumed
that Y/(X ! Y) " 0.16
in the molecular re-
gion. The size of the
central rock and ice cores of Jupiter and Saturn is very uncertain (see text). Two representative
models of Uranus and Neptune are shown, but their actual interior structure may be significantly
different (34). The figure is adapted and updated from (19).
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Rotating MHD waves

• Waves in the presence of both magnetic field and rotation           
have been studied for incompressible fluids and applied to     
Earth’s liquid iron core
– torsional Alfvén waves (e.g. Braginsky 1967, Zatman & Bloxham 1997)

• e.g. ~ 6 yrs variation  à core internal field Bs >~ 2 mT (Gillet et al. 2010)

• accounting for the interannual length-of-the-day variations?  

– magnetic Rossby waves (Hide 1966)

• e.g. ~ 300 yrs westward drift à Bf ~ 1-10 mT? (Hori et al. 2015)

– MAC waves in a thin stably-stratified layer, at the top of the core?
• axisymmetric (e.g. Braginsky 1993; Buffett 2014), fast magnetic Rossby (Chulliat et al. 2015)

• What about in Jupiter’s interior? 
– density significantly varies with radius: r(rcore)/r(rmetallic) ~< 20

* anelastic approximation for compressible fluids adopted



(The derivation of (24c) from (23d), though lengthy, is direct; it is included at the end of
appendix B. The reduction does not discard the effects of magnetic diffusion which
continues to be locked into the definition (23g) of R(s, t).)

The essence of (24c) is contained in

@ 2!A

@t2
¼ 1

s2bA
@

@s
s2bAV2

A

@!A

@s

! "
, ð25Þ

which we call the canonical wave equation. (The additional bNs@s!A is one of two terms
that are new to the subject and are discussed later; see section 8.3 and appendix B.)
Equation (25) recovers something very similar to an Alfvén wave, called the torsional
wave in which !A evolves on the fast Alfvénic time scale

"A ¼ ro=VA $ 6 yr: ð26aÞ

This is why A was added to ! in (24c) and (25). Because "A is so similar to the time-scales
"LOD seen in figure 1, it is plausible that torsional waves are responsible for the LOD
variations, as argued by Gillet et al. (2010). Because it is so dissimilar to "m, it is sensible
to base discussions of torsional waves on representations of the form

V ¼ Vm þ vA: ð26bÞ

Then, when studying the waves, mac variables (m) can be assumed to be constant. In
section 8 and appendices B–D, we shall use (26b) but omit the A on wave variables such
as !A. We shall consider only the case when (23a) is nearly satisfied, and the wave
amplitude is so small that quantities such as (vA)2 are negligible.

In a torsional wave, the geostrophic cylinders are in relative angular motion about
their common (polar) axis; see figure 4(a). The response bA of B to the motion vA is not
the geostrophic average of B, but is determined by solving (11d,g) and boundary
conditions (20b–e). It can, as for an Alfvén wave, be visualized by using the frozen

Figure 4. Schematics showing (a) a geostrophic flow in the core, Vg, and (b) a plan view of an initially
cylindrical magnetic field (dashed line) distorted by v. The restoring Lorentz torque on the distorted magnetic
field, B (solid line), lead to the cylindrical propagation of torsional waves. Adapted from Dumberry 2007.
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• A special class of Alfvén waves (Braginsky 1970; also Jault & Finlay 2015) : 

– The azimuthal momentum equation integrated over 
cylindrical surfaces C = 2ps h(s) about the rotation axis:

– For anelastic/incompressible fluids, the Coriolis term vanishes
– The magnetostrophic balance (Ro, E<<1 & L=O(1) ) yields a 

steady state (Taylor 1963)

– Cylindrical perturbations on the state, <uf’> = <uf’>(s,t), 
can be governed by a homogeneous equation:

• propagation in radius s with Alfvén speed UA  

given by z-mean quantities: UA=(<Bs
2>/<r>µ0 )1/2

• both outward (+s) and inward (-s) propagation, 
or standing waves, possible 

Torsional Alfvén waves

(Roberts & Aurnou 2012)
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fB�|), the equation can be
drastically simplified to only leave the homogeneous part
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where U2
A = hfB2

s i/µ0h⇢i, implying a wave equation for angular velocity hu0�i/s in the anelastic case (Jault
& Finlay, 2015). Here the restoring force is represented by FLR, while the remaining terms can be summed
up to a forcing term FLD = F

0
L�FLR, as well as F 0

R. A perturbation of angular velocity can propagate in
cylindrical radius s with an Alfvén speed UA. The speed depends on the magnitude of the background
poloidal field B

2
s and the background density ⇢, both of which may vary with s. As expected for the

MHD wave, this special mode is also nondispersive, i.e. the speed independent of wavenumbers. Since the
equation allows both inward and outward propagation, a superposition of those modes, provided a similar
amplitude and proper excitation, could yield its standing waves and enable normal mode solutions. In
Earth, neverthelss, data as well as numerical simulations indicate its propagating nature, preferable to
standing ones (see sec. 1). We shall discuss below that standing TWs could be chosen in Jupiter.

3 Numerical simulations

To explore potential excitation of TW in the gas giant, we choose three Jovian dynamo models, which were
build by Jones (2014). We here overview only the essential part for the analysis shown below: see Jones
(2014) for the detailed description. The models exploit self-generation of magnetic fields by anelastic fluid
motions in rotating spherical shells, for which the equilibrium reference state calculated by French et al.
(2012) as well as viscous and di↵usion terms were taken into account. Given the reference state of density
⇢, electrical conductivity �, and temperature T , they model a metallic hydrogen region above a rocky
core, r � rc ⇡ 6.45⇥ 106m ⇡ 0.09RJ, and its continuous transition to a molecular hydrogen region. The
transition begins at around r ⇡ 0.85RJ and only the region below a cut-o↵ level, r  rcut ⇡ 6.7⇥107m ⇡

0.96RJ, is treated in our simulations. The density scale height N⇢ = ln [⇢(rc)/⇢(rcut)] between the core
boundary and the cut-o↵ radius is approximately 3.08. Convection is largely driven by a uniform entropy
source, which is likely released as the planet cools; this di↵ers from the geodynamo, which is primarily
driven by a buoyancy source arising from the inner core boundary due to its freezing. As the electrical
conductivity � drops by more than five orders across the transition radius, a thin, poorly-conducting
layer is formed at the top of the shell. Since the Proudman-Taylor constraint rules fluid motions in the
hydrodynamic layer, though it is now compressible, it produces an imaginary cylinder that attaches to
the bottom of the thin layer at the equator. We call it a magnetic tangent cylinder (MTC), located at
s ⇡ 0.9rcut ⌘ smtc, whereas the solid core forms a kinematic TC at s = rc ⌘ stc. The core leaves only a
small fraction for the inside of the TC, and so we shall concentrate on the outside, s & stc.

The chosen models and some key quantities are listed in table 1. They show the Rossby numbers Ro,
quantifying the relative strength of the inertia to the Coriolis force, no greater than 10�3. The advective
terms therefore only have a minor role, as assumed in the linear theory. The Elsasser number ⇤ measures
the ratio of the Lorentz force to the Coriolis force and amounts to 5-10 in our simulations. This would
indicate those models possibly strong-field dynamos when relying on incompressible, Boussinesq theories;
it is unclear that the scenario is applicable to anelastic fluids. Amongst the three, model I was reported
to reproduce a magnetic field that best resembled the one Juno recently found (Jones & Holme, 2017).

The magnetic fields self-generated in those runs are non-reversing dipole-dominated. They act as a
background field for MHD wave motions discussed below. Its poloidal part, Bs in cylindrical coordinate,
defines a frequency or a propagation speed of TW. In figure 1, a solid curve depicts the nondimensional
Alfvén speed, UA, as a function of cylindrical radius s for model I. Here the time and length are scaled
by the magnetic di↵usion time and the shell thickness (d = rcut � rc), respectively, and the bounds for
z-averages are taken at the rcut. In the figure, we also plot a speed UA with the density being constant
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• Suppose the incompressible case 
– Alfvén speed UA for constant r

• Early studies sought its standing form        
(e.g. Braginsky 1970; Zatman & Bloxham 1997) 

• More likely travelling to the equator 
– data: 4-9 year periods (Gillet et al. 2010, 2015)

• the internal field strength of <Bs
2>1/2 ≥ 2 mT

– geodynamo simulation (Wicht & Christensen 
2010; Teed et al. 2014; Schaeffer et al. 2017) 

• no obvious reflection, no standing 
‘oscillations’

• due to strong dissipation around CMB? 
– lab experiments also? (Nataf et al.)

Torsional waves in Earth’s core

Turbulent geodynamo simulations 21

Figure 21. Space–time diagram of z-averaged zonal flow uφ showing torsional wave propagation outside the tangent cylinder in the simulation S2 (E = 10−7,
Pm = 0.1). Inside the tangent cylinder (marked by the horizontal grey line at s = ri), the flow is averaged in the Northern hemisphere only. Bottom panel
continues the top one. The magenta curve is the signature of a propagation at the expected torsional Alfvén wave speed.

Figure 22. Left: rms value of the cylindrical radial magnetic field (averaged over z and φ) in S2, which is proportional to the torsional Alfvén wave propagation
speed Va. The blue and red thick curves show the time-average on the first half of the time-series (low field) and the second half (high field). Right: magnetic
field fluctuation levels averaged in longitude and time in S2 (Elsasser units).

in a dynamo simulation (Schaeffer et al. 2017)

UA

Year

Journal of Geophysical Research: Solid Earth 10.1002/2014JB011786

Figure 9. Ratio Z∕NZ between the power spectral densities (PSD) for
the zonal and nonzonal flows as a function of period. In bold black line
the ratio for the ensemble average of flow solutions. In bold grey the
average ratio over the ensemble members (thin grey line: ±1 standard
deviation). Flows are truncated at degree ! = 14.

decadally varying signal and a 5.9 year
oscillation of almost constant amplitude
(compare their Figure 2 with our Figure 8,
bottom). In our opinion, the relatively
small amplitude of the oscillation (in com-
parison with that of decadal changes)
makes it difficult to decide whether it is
long standing or heavily damped. Figure 8
(bottom) displays all the LOD changes
produced by geostrophic flows in the fre-
quency range [4–9.5] years. They need
not all be attributed to the propagation of
torsional waves. In any case, the remark-
able agreement between our predictions
and the geodetic data encourages us
in the interpretation of the flow model
down to periods about 4 years.

Geostrophic motions appear very clear
over 1995–2010, particularly as the tor-
sional wave approaches the equator, at
latitudes below 40∘, with a node of the

waveform at about 10∘ latitude (see Figure 10, bottom). The amplitude of the motions in this region is signif-
icantly larger than the spread in the flow ensemble (even at earlier epochs), yet the better resolution of the
field model at recent epochs may have increased the sensitivity in the relatively small (in latitudinal extent)
equatorial area. We confirm the slower propagation inferred by Gillet et al. [2010] as the wave gets closer to
the equator and find no evidence for reflection at the equator.

Now the theory of “magnetostrophic dynamos” [see, e.g., Roberts and Wu, 2015], which has been devel-
oped to account for the Earth’s magnetic field, gives us a tool to interpret the ratio Z∕NZ as a function
of frequency. We note above that this ratio remains small and does not vary much for periods larger than
8 years (see Figure 9). Taylor [1963] demonstrated that in the absence of inertia and viscosity we have

Figure 10. Ensemble mean of the geostrophic flow (in km/yr),
band-pass filtered between 4 and 9.5 years, as a function of time. The
black line correspond to 10∘ latitude. (top) The grey lines correspond to
Alfvén velocities C based on a r.m.s. cylindrical magnetic field of 1.9
and 0.6 mT in regions respectively close to the inner core and close to
the equator. Bottom pannel: Y axis increments are proportional to the
surface between s and s + !s (dY ∝ sin "d" ⇒ Y ∝ 1 − cos ").

∀s,∫Σ(s)
1# ⋅ ((∇ × B) × B)dΣ = 0 , (27)

with Σ(s) the geostrophic cylinders (see
Roberts and Aurnou [2012] or Jault and
Finlay [2015] for modern accounts of Tay-
lor’s theory). Differentiating in time (27)
and substituting $B∕$t with its expres-
sion from the induction equation

$B
$t

= ∇ × (u × B) + %∇2B , (28)

Taylor [1963] obtained a linear relation-
ship between the geostrophic zonal flow
uG and nongeostrophic motions uNG,
which depends on the magnetic field
inside the core (see his equation (4.5); % is
the magnetic diffusivity),

1
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in a core flow model (Gillet et al. 2015)
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deviation). Flows are truncated at degree ! = 14.
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• Setup (Jones 2014; also Gastine et al. 2014): 

– model a metallic region & a transition to  
the molecular region: 0.09RJ < r < 0.96RJ

– dynamos driven by rotating, anelastic
convection (Lantz & Fan 1999; Braginsky & Roberts 1995) 

– a reference state (French et al. 2012):
• density contrast, r(rcore)/r(rcutoff) ~ 18
• electrical conductivity s drops at r ~ 0.85RJ

by more than five orders

• Some features:
– jupiter-like magnetic fields reproduced

Jovian dynamo models
The reference state used in the model

Br at the cutoff radius rcutoff ~ 0.96 RJ
truncated up to n=10 (after Jones 2014)

metallic region

electrical conductivity
s/sm

~ ~
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• Setup (Jones 2014; also Gastine et al. 2014): 

– model a metallic region & a transition to    
the molecular region: 0.09RJ < r < 0.96RJ

– dynamos driven by rotating, anelastic
convection (Lantz & Fan 1999; Braginsky & Roberts 1995) 

– a reference state (French et al. 2012):
• density contrast, r(rcore)/r(rcutoff) ~ 18
• electrical conductivity s drops at r ~ 0.85RJ

by more than five orders

• Some features:
– jupiter-like magnetic fields reproduced
– a magnetic tangent cylinder formed

• attaching to a top of the metallic region         
at the equator

• one strong jet outside the MTC; weak       
multiple zonal flows inside
– fluctuating: to be analyzed

Jovian dynamo models

~ ~

thelowconductivityregion,theflowinthemetallichydrogen
regionhavinglittlezonalflow,duetolockingbythemagneticfield.
Thereisasmalltransitionregionattheedgeofthemetallichydro-
genregionwherethereissomezonalflowwithnon-negligible
electricallyconductivity,butthistransitionregionseemstobe
toothintoaffecttherunDdynamosignificantly.InFig.6c,the
runBsolution,thezonalflowisimportantinthemetallichydrogen
region.Differentialrotationthenshearstheconvectioncolumns,
andahighlynonaxisymmetricnondipolarfieldpatternresults.
Thisseparationofthezonalflowandtoroidalfieldintodistinct
regionsoutsideandinsidethetransitionzoneappearstobecrucial
toobtainingadipolarJupiter-likemagneticfield.Fig.6dshowsthe
radialvelocityintheequatorialplane.Theconvectioncolumns

outsidethemetallichydrogenregionaredisconnectedfromthose
inside.Moviesshowthatthesmallscaleconvectioninthecurrent-
freeregionisstronglyadvectedbythezonalflow,whereasthecon-
vectingcolumnsinthemetallichydrogenarenotsignificantly
shearedovertheirlifetime.AtPr¼1theconvectionoutsidethe
metallichydrogenregionisonasmallerscalethantheconvection
inthemagneticallyinfluencedregion(Gastineetal.,2012)butat
Pr¼0:1thedominantazimuthalwavenumberisnotsodifferent.
Gastineetal.(2012)arguethatthevigoroussmallscaleconvection
intheouterregionsmakeslargescaledipolardynamoaction
problematic,sothelargerscalesatPr¼0:1maybeconnectedwith
theexistenceofthedipolarwindowthere.Themeridionalsection
Fig.6eofurshowsthattheflowiscolumnar,thoughthecolumns
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donotreachrightacrosstheplanet.Columnarconvectionappears
tobeessentialfordynamoactiondominatedbythedipolar
component(Olsonetal.,1999;SreenivasanandJones,2011).

Fig.7showsasequenceofsnapshotsoftheaxisymmetricpart
oftheazimuthalfieldatdifferenttimestakenfromrunB,a
non-dipolarrun.Thesequenceshowsevidenceofadynamowave
progressingfrompoletoequator,ashappensinthesolardynamo.
InFig.7a,thefieldisdominatedbynegativefieldinthenorthern
hemisphereandpositivefieldinthesouthernhemisphere,the
antisymmetricformoftheazimuthalfieldbeingconsistentwith
adipolardynamogeneratedfield.However,inFig.7bhigh-latitude
reversedfieldstartstogrow,andbythetimeofFig.7ctheoriginal
azimuthalfieldisbeingsqueezedbythesereversefluxpatches
movingtowardstheequator.BythetimeofFig.7d,theoriginal
fluxpatcheshavegone,andthefieldisapproximatelyreversed
fromFig.7a.Thecyclethenrepeats,withfaintpatchesoftheori-
ginalfieldparitynowvisibleathighlatitudes.Thesequenceshown
inFig.7hasbeenchosenbecausethedynamowaveisquiteclear-
cut,butingeneralthedynamowavesarerathererratic,ascanbe
anticipatedfromtherunBplotsinFig.2a,superimposedon
chaoticfieldfluctuationstypicalofhighRmnumericaldynamos.
However,theradialcomponentofthefieldisconsistentwitha
dynamowaveinterpretation.Dynamowaveswereseenby
Duarte(2014)inacompressibleJupitermodeldynamoatPr¼1,
thoughthesetravelledfromequatortopole.

Theparameterspaceislarge,andithasnotyetbeenfully
mapped.However,atPrbetween0.1andunitywithuniformheat-
ing,therunBbehaviourwasfrequentlyfoundatrelativelylowRm.
AtlargerRm,theflowislesscolumnar,andthedynamoissmall
scale,asfoundinBoussinesqmodelswhenthelocalRossby

numberbecomestoolarge(SreenivasanandJones,2006;Olson
andChristensen,2006).AsthePrandtlnumberisreducedtowards
0.1,theweakhighlatitudereversedfluxpatchesseeninFig.7no
longergrow,thoughthereisafainttraceoftheminFig.5d.

InBoussinesqdynamomodels,changingfromafixedtempera-
tureouterboundaryconditiontoafixedfluxouterboundarycon-
ditioncanmakeasignificantdifferencetotheformofthemagnetic
fieldandtheconvection(SakurabaandRoberts,2009;Horietal.,
2010).Thisseemstobelesstrueintheseanelasticdynamomodels,
buttoexplorethiseffectwepresentinFig.8typicalsnapshots
fromrunsEandI,whichdifferonlyinthatinrunIthefluxisfixed
attheouterboundarytotheaveragevaluefoundinrunE(see
Fig.3b).Thismeansofcoursethattheentropyisnolongerfixed
atzerothere,andinrunIthepoleswereslightlycoolerandthe
equatorslightlyhotter.Sincetheconvectionisdrivenbyverysmall
entropychanges(Jupiter’sinteriorisclosetoadiabatic)thiscorre-
spondstoonlyaverysmallpole-equatortemperaturedifference,
wellbelowanyobservationalconstraints.Fig.8b,dandfcorre-
spondtothefixedfluxcase,Fig.8a,c,andetothefixedentropy
case.Thereisnogreatdifferencebetweenthetwocases,butthe
dipoleisslightlystrongerinthefixedfluxcase,andthisisthecase
formosttimes,thoughoccasionallythedipoleinrunEwillexceed
thatinrunI.ThezonalflowinrunIismoreconfinedtotheequa-
torialregionaswewouldexpectfromthestrongerdipoleleading
tomoreefficientlockingofthezonalflow.InFig.8eandftheaxi-
symmetricradialmagneticfieldsarecompared.Thereismore
reversedfluxneartheequatorinthefixedentropycase,andthis
leadstoabeltofslightlyweakerradialfieldneartheequatorin
Fig.8acomparedtoFig.8b;althoughthisfeatureisnotvery
striking,itispersistent.
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• Predicted Alfvén speeds                                  
UA = (<Bs

2>/µ0<r> )1/2 :

– independent of wavenumbers, i.e. nondispersive
– higher for low r,   i.e. increasing with s
– drops to the MTC 

Anelastic Alfvén speed in simulations

Cylindrical radius  s/rcutoffat E = 1.5*10-5, Pm=3, Pr = 0.1, H=1.4 
& fixed entropy-flux outer boundary

MTC

Al
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• Identified with the predicted speeds 
of UA = (<Bs

2>/µ0<r> )1/2

– travelling in s, outwardly or inwardly, 
from an outer radius (0.6 < s/rcutoff < 0.8) 

• Reflected from the MTC
– which acts as an interface to a 

resistive zone 
• 1D models helpful

Torsional waves in Jovian simulations

at E = 1.5*10-5, Pm=3, Pr = 0.1, H=1.4 
& fixed entropy-flux outer boundary

s

Axisymmetric azimuthal velocity, uf

Time / magnetic diffusion time
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• Waveforms can become sharp
– steepening; weak, unstable 

• typical for inviscid nonlinear 
waves

• e.g. water waves, shock waves
• cf. dispersive, cnoidal/solitaty

Rossby ones (Hori et al. 2017)

• Reflection from the MTC
– as well as transmission to the 

outside
– reflected waves not identical      

to incident waves
• due to its spherical geometries, 

variable background fields,
nonlinearities, etc.

Evolution of torsional waves

Cylindrical radius  s
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• Consider 1d models:

then the governing equations 

where B0 and h are constants; h = 0 for x < 0

• Seek solutions in form of 
for x < 0
for x > 0  (with complex l)

with continuous conditions across the interface x = 0:

to yield the reflection coefficients for w >> VA
2/h0 :

– for large w >> k2h0 , then R ~ -1 & T ~ 0: perfect reflection
– uy ~ dby/dx: a negative reflection in by yields a positive reflection in uy

Alfvén waves approaching a resistive layer
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Alfvén waves approaching a resistive zone

Kumiko Hori1,2

1 Introduction

•

2 Governing equations

Suppose that there is a basic magnetic field.

Let
B = B0êx + by(x)êy , u = uy(x)êy (1)

the governing equations are

∂by
∂t

= B0
∂uy
∂x

+ η
∂2by
∂x2

where

{
η = 0 for x < 0

η = η0 for x > 0
(2)

∂uy
∂t

=
B0

µρ

∂by
∂x

(3)

the continuity condition for by and uy, or ∂by/∂x, across x = 0

b−y = b+y ,
∂b−y
∂x

=
∂b+y
∂x

(4)

Look for a solution in form of

by = eiωt
(
e−ikx +R e+ikx

)
for x < 0 (5)

by = T eiωteλx for x > 0 (6)

when V 2
A ! ωη0

λ =

√
ω

2η0
(−1 + i) (7)

So at the interface it should be satisfied:

1 +R = T (8)

−ik + ikR = T
√

ω

2η0
(−1 + i) (9)

leaving

R =
ik +

√
ω/2η0(−1 + i)

ik −
√

ω/2η0(−1 + i)
(10)

when ω # k2η0, this ends up to R ∼ −1 and hence T ∼ 0, i.e. perfect reflection.
Note this all about by: since u−y ∼ ±ikb−y , the negative reflection in by yields a positive reflection in uy.

Also, for transmitted waves u+y ∼ λb+y ∼ (−1+ i)/
√
2b+y , suggesting a 3π/4-shift in u+y , or same phase as

the reflected wave while being absorbed.
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perfect conductor
(zero h)
for x < 0

resistive layer
(nonzero h)

for x > 0

B0

Appendix C. Alfvén waves approaching a resistive zone

We consider a Cartesian, one-dimensional model for Alfvén waves approach-

ing a resistive layer. Let x = 0 the interface between a perfectly conducting

fluid (for negative x) and a weakly conducting one (for positive x). They are

permeated by a uniform background magnetic field B0 in the x direction. For

simplicity we assume an incompressible fluid with ρ0 being constant density.

We then suppose the variables

B = B0êx + by(x)êy , u = uy(x)êy (C.1)

to rewrite the equations of induction and momentum as

∂by
∂t

= B0
∂uy

∂x
+

∂

∂x
η
∂by
∂x

and
∂uy

∂t
=

B0

µ0ρ0

∂by
∂x

, (C.2)

respectively. Here the magnetic diffusivity, η(x) = 1/µ0 σ(x), varies in x: it is

set zero for x < 0 and to a constant nonzero value η0 for x > 0. At the interface

the field and velocity are continuous, i.e. the continuity condition across x = 0

is required for by and ∂by/∂x.

Eq. (C.2) may be reduced to

∂2by
∂t2

= V 2
A
∂2by
∂x2

for x < 0 (C.3)

∂2by
∂t2

= V 2
A
∂2by
∂x2

+ η0
∂3by
∂t∂x2

for x > 0 , (C.4)

where the Alfvén speed VA = B0/
√
ρ0µ0. Now we seek solutions of the form

by = eiωt
(
e−ikx +Reikx

)
for x < 0 (C.5)

by = T eiωteλx for x > 0 (C.6)

where λ, R and T are complex and k2 = ω2/V 2
A. For x > 0, substituting (C.6)

into the respective wave equation (C.4) gives

λ2 = −ω2(V 2
A − iωη0)

V 4
A + ω2η20

. (C.7)
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• The momentum equation can be split 
into the restoring and forcing parts:

– TW initiated by the Reynolds force at an 
outer radius, 0.6 < s/rcutoff < 0.8 

– at which convection is beating on 
timescales of (hydro) Rossby waves

Excitation mechanism

Reynolds term  FR

forcing Lorentz term  FLD
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• Zonal flow fluctuations in another case
– standing inside the MTC

• travelling from an outer radius both inwardly and outwardly
• superposition with reflected waves enables standing waves

– only transmitted outside the MTC
• while being absorbed
à The nature signifying the depth?

– cf.  Earth’s CMB
• a bound of the core fluid 

(e.g. Schaeffer & Jault 2016)

Torsional ‘oscillations’ possible

at E = 1.5*10-5, Pm=3, Pr = 0.1, H=1.4 
& fixed entropy outer boundary

Fluctuating, z-mean azimuthal velocity <u’f>

UA
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Dimensional time  tJ [years]
0 8.8 17.6 26.4       35.2       44.1



• Typical timescales
– Given a field of Bs ~ 3 mT &  r ~ 853 kg/m3 at the equator at a top 

of the metallic region (~ 0.85 RJ),  then Alfvén speed ~ 9.2*10-2 m/s
– TW traveltimes across the metallic region can be 9-13 years

• Note: the internal field uncertain

• TW seen on a spherical surface
above the metallic region
– amplitude < 1/10 of our    

zonal jet outside MTC

– cf. changes in the zonal
wind at the cloud level?
(Tollefson et al. 2017)

– cf. global upheavals?? 
(e.g. Rogers 1995)

Detectable on Jupiter?
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Filtered, zonal velocity fluctuation u’f /max(Uf) at the 
cutoff boundary (~0.96 RJ) in the southern hemisphere
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Long-term changes at the cloud deck?
• Zonal wind speed

– In-situ (Cassini vs. Voyager 2) reported (Porco et al. 2003)

– ground/HST campaigns (2009-2016) identified relevant variability 
near 24 ○N  & 5-7 year periods at lower latitudes  (Tollefson et al. 2017)

• Coloration, brightening, outbreak events, etc.
– sketched for > 100 years: ‘global upheavals’ (Rogers 1995; Fletcher 2017)

– irregularly, but periodic at some epoch at NTB?  

19
89
JB
AA
..
.9
9.
.1
35
R

174 J. Tollefson et al. / Icarus 296 (2017) 163–178 

Fig. 10. Left: Time series of low-latitude zonal winds from WFC3 (2009–2016), combined with zonal winds measured from Voyager (not shown) and HST/WFPC2 data 
( Simon-Miller and Gierasch, 2010 ), with speeds corresponding to color values. Right: Corresponding Lomb-Scargle periodogram. False alarm probabilities of 20%, 15% and 10% 
are shown as vertical ticks on the color bar. The periodogram color bars span over the derived period mid-points, and correspond to periods of 4.2, 4.5, 4.8. 5.2, 5.6, 6.1, 6.7, 
7.5, 8.5, 9.7, 11.4 and 13.8 yrs. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

A chain of such features, marked “Cyclone Alley” in Fig. 6 , re- 
sults in locally high mean zonal wind uncertainties near 55 °S. 
These locally high uncertainties produce noticeable protrusions in 
the red envelopes in Figs. 7–9 near 55 °S. Cyclone Alley in our 
velocity residual maps coincides with where the Galileo imag- 
ing experiment found the highest density of lightning strikes per 
unit area ( Little et al., 1999 ; 52.5 °S planetocentric latitude in their 
Table 2 is equivalent to 56.1 °S planetographic latitude in our fig- 
ures). Cyclones can be bordered by turbulent regions around their 
main bodies (resulting in ‘frilly’ looking structures). Levin et al. 
(1983) concluded that water cloud particles are the most likely 
medium for Jupiter’s lightning generation, based on estimates of 
electrical conductivity for the different jovian cloud materials, as 
well as mass loading values that are consistent with values in more 
recent work by Wong et al. (2015a ). Thus, evidence of cyclones and 
lightning near 55 °S suggests that the vortices could vertically ex- 
tend to pressures associated with the water cloud layer between 
5–8 bar ( Weidenschilling and Lewis, 1973; Wong et al., 2008; Bjo- 
raker et al., 2015 ). 

The large, turbulent, convectively active region to the north- 
west of the GRS (the “GRS wake”) displays a consistent signature 
in the velocity residuals, at all epochs. The residual wind blows 
to the northwest in the northern section of the GRS wake, and to 
the southeast in the southern section, and thus corresponds to di- 
vergent flow at the cloud top level. Although divergent flow has 
been known to characterize individual convective supercells in this 
region, which themselves generate both cyclonic and anticyclonic 
eddies ( Gierasch et al., 20 0 0 ), our residual maps indicate that the 
entire region is characterized by large-scale divergence. 

A persistent feature in the ZWPs at the same latitude as the 
GRS wake (within the SEB) is a “kink” in the meridional wind shear 

in the 10 °–15 °S range. It might seem plausible that the kink may 
be associated with the GRS wake, since its velocity residual is so 
large. The 2009 and 2012 two-hemisphere analyses test this hy- 
pothesis, since at each epoch, the GRS wake was present in only 
one of the hemispheres. Indeed, for 2012, significant differences 
(15–18 ms −1 ) are present around the kink ( Fig. 8 ). The kink is 
much weaker (smaller changes in meridional shear) in the hemi- 
sphere that does contain the GRS wake. 

For 2009, a significant difference is not seen, consistent with 
the absence of a turbulent GRS wake at that time; convective activ- 
ity had stopped and the SEB was quiescent and whitening ( Fletcher 
et al., 2011 ). Conversely in 2008, the wind speed in the kink was 
particularly slow, and convective activity was present at most lon- 
gitudes at this time (see Fig. 1 of Asay-Davis et al. (2011) ). There 
seems to be a correlation between large-scale convective activity 
and slower zonal wind speeds near 10–15 °S. One caveat is that 
gaps in the temporal sampling of our 2009 dataset degraded the 
sensitivity to velocities near 270 °W, just to the west of the GRS 
(Supplemental Fig. S1, Velocity Residuals for 2009). 

An additional velocity feature is present at these latitudes for 
the 2016.11 data, but not for any other epoch. This feature con- 
sists of a diagonal streak of eastward velocity residuals ( Fig. 6 ) 
that corresponds to a thin, zone-like linear cloud feature in the 
albedo map ( Fig. 4 ). Longitudinally, the velocity residual feature 
and the albedo feature both alternate in sign, with one complete 
cycle around the planet (zonal wavenumber 1), possibly an exam- 
ple of the GRS and its turbulent wake reflecting large-scale waves 
back toward the equator ( Simon-Miller et al., 2012 ). When similar 
albedo features are present (2009 and 2016.95 epochs), they main- 
tain a simlar slope in latitude/longitude, yet the velocity residual 
features appear to be aligned strictly east-west. This may be an ef- 

(Rogers 1989, 1995)

(Tollefson et al. 2017)



• TW transport the angular momentum
– almost-perfectly exchanging the angular momentum ds 

with the overlying molecular region, where

• This may fluctuate the planet’s rotation rate (LOD) 
– the change ds = -2p I dP/P2 implying an LOD variation dP

– cf.  O(10-2 s) changes of the
System III ?: decametric radio
emission (Higgins et al. 1996)

Length-of-day variations
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at E = 1.5*10-5, Pm=3, Pr = 0.1, H=1.4 
& fixed entropy outer boundary

field magnitude, and the density ρeq(0.885rcut) of 8.53 × 102kg/m3, an Alfvén

speed UJ
A at this radius is approximately 9.16 × 10−2m/s. By matching the335

Alfvén speeds, our dimensional time unit is calculated through DUA/UJ
A, where

D is the shell thickness of 6.06 × 107 m. From this we calculate dimensional

versions, τJ and τJ
A, of the analyzed interval, τ , and the TW travel time, τA,

respectively. Values for each run are listed in Table 2. While time units vary -

from 6.1 to 8.8 thousand years - as do analyzed time windows, τJ - from 31 to340

44 years - the traveltimes, τJ
A, all fall within a 9-14 years window. If a stronger

average field of 60G is supposed, estimated TW traveltimes are reduced to 4-7

years (values are shown in parentheses in table 2).

Fluctuations in axisymmetric zonal flows can produce variations in the angu-

lar momentum of the metallic hydrogen region which can, in turn, be transferred345

to other parts of the planet. This can produce fluctuations of the rotation period

of the planet, namely length-of-day (LOD) variations. In Earth, an LOD varia-

tion with a period of nearly six years with amplitude O(10−4s) was attributed

to the angular momentum exchange between the fluid core and the rocky mantle

through MHD waves ([10]; also sec. 1). One may envisage an analogous cou-350

pling in Jupiter between the deeper conducting metallic region and the overlying

insulating molecular envelope and hence a Jovian LOD fluctuation.

We evaluate the influence by calculating the axial angular momentum change

that is deduced from the axisymmetric disturbances in our metallic hydrogen

region,355

δσ = 2π

∫ smtc

stc

∫ z+

z
−

h〈ρeq〉s
2〈u′

φ〉dzds , (9)

and those outside the region,

δσomtc = 2π

∫ rcut

smtc

∫ z+

z
−

h〈ρeq〉s
2〈u′

φ〉dzds . (10)

In figure 6 the solid and dotted curves display the time evolutions of δσ and

δσomtc in model E, respectively. The δσ of the conducting region shows a quasi-

periodic variation, corresponding the flow oscillations (fig. 2b). More notably,

the evolution is almost perfectly anti-correlated with the change δσomtc of the360
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Dimensional time  tJ [years]
0 8.8 17.6 26.4 35.2        44.1



Jovian LOD changes?
• The gas giant’s rotation rate

– System III (1965):  9h 55m 29.71s
• relying on measurements of decametric radial emission from 

the magnetosphere (Burke & Franklin 1955)

• the accuracy in O(10-2s) has been some debate
– the true change (Higgins et al. 1996, 1997)

– jovimagnetic SV (Russell et al. 2001; Ridley & Holme 2016)

– what else??

HIGGINS ET AL.' JUPITER'S ROTATION PERIOD 2655 

at the same observatory and the same frequency during 
two apparitions separated by about 24 years are shown 
in panels a and b. The cross correlation function, i.e., 
the plot of cross correlation coefficients versus the CML 
shift of the second histogram relative to the first one, is 
shown in panel c. The Cli/IL shift for maximum correla- 
tion, in degrees, is AA. The corrected rotation period, 
Pc, is calculated by means of equation (1). 

The averaging of these initially determined rotation 
period values was done in two stages. Values obtained 
from different pairs of apparitions can certainly be con- 
sidered to be statistically independent. We also consid- 
ered that values obtained during the same apparition 
pair but at different observatories to be independent, 
although they may not be completely so. However, val- 
ues obtained from the more than one frequency channel 
at one observatory are not completely independent of 
each other. Although the 2 MHz separation between 
adjacent frequency channels is sufficiently large that 
the individual bursts occurring during a noise storm 
on one channel do not necessarily appear simultane- 
ously on the other, there is considerable correlation be- 
tween the general times of noise storm occurrence on 
the two frequency channels. We therefore compute a 
single weighted average period from the one, two, or 
three frequency channels that were operated simultane- 
ously at one observatory during each of the selected ap- 
parition pairs. The weighting factor that was employed 
is the product of two parts. The first part, which de- 
pends on the quantity of the Jupiter emission data that 
was available, is the square root of the geometric mean 
of the respective Jovian activity times observed during 
the two apparitions of the selected pair at the given fre- 
quency. The second part, which is an indication of the 
quality of the data, is the maximum value of the cross 
correlation coefficient that was obtained, i.e., the value 
corresponding to the CML shift AA. 

This first stage of averaging yields a list of statisti- 
cally independent rotation period measurements, one 
for each of the selected apparition pairs (separately for 
the Florida and Chile observatories). Associated with 
each of these initial averages is a resultant weighting 
factor derived from the one, two, or three individual 
frequencies used in computing it. This list consists of 
13 rotation period values each of which is the average 
over 24 years, and 11 that were averaged over 12 years. 
The final weighted mean rotation period and the stan- 
dard deviation of the mean were obtained from this list. 

3. Results and Discussion 

The final value obtained for the weighted mean rota- 
tion period is 

P - 9n55m29s.685 4- 0s.0034 (2) 

where 0s.0034 is the standard deviation of the mean. 
We are confident that our standard deviation estimate 
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Figure 2. Plot of our 24 independent rotation period 
measurements as a function of the mid-date of the time 
interval over which each period was averaged. The black 
circles represent 24-year averages and the white boxes 
are 12-year averages. The error bar heights are inversely 
proportional to their statistical weights. The light dot- 
ted line is the weighted mean of the values. The heavy 
dashed line is the currently accepted System III (1965) 
period. 

is realistic. 
becomes 

Expressed in seconds, the rotation period 

P - 35729s.685 4- 0s.0034. (3) 
The precision of the measurement is thus one part in 10 
million. 

In Figure 2, our individual 24-year and 12-year av- 
erage rotation period values are plotted as a function 
of the mid-dates of their averaging intervals. The error 
bar lengths are inversely proportional to the statistical 
weights. Two of the points have relatively little weight, 
because of abnormally short observing seasons in com- 
bination with low rates of Jovian activity. Their error 
bars are far off-scale in the plot. 

We compare our new rotation period with the cur- 
rently accepted System III (1965) value. The latter, 
shown in Figure 2 in relation to the 24 independent 
measurements that were averaged to obtain our new 
value, is obviously too high. The difference between 
the accepted value and our new one is 0s.025 4- 0s.0034, 
which is 7.4 times the standard deviation of our value. 
This is a highly significant difference; it would result in 
a drift between the two rotation systems of about 0ø.2 
per year (4ø.4 since System III (1965) was adopted in 
1976). Our measurement of the Jovian rotation period, 
which is by a considerable margin the most precise that 
has yet been made, therefore indicates that the present 
I.A.U. standard value needs to be decreased. 

From a weighted least squares straight line fit to our 
measured 24-year average rotation period values, we 
conclude that the true rotation period of the Jovian 
inner magnetosphere is not changing at a rate in excess 
of 27 milliseconds per year. If a program of monitor- 
ing Jupiter's decametric radiation were continued indef- 
initely, a true change would surely be detected eventu- 

(Higgins et al. 1996)



Summary 
Axisymmetric, torsional Alfvén waves possibly excited in 
Jupiter’s metallic H region

• identified in Jovian dynamo simulations
– implementing a smooth transition from the metallic to molecular 

regions, forming a magnetic TC

• propagating in cylindrical radius with Alfvén speeds ~ Bs/r1/2

– on timescales of O(100-1 yrs) for an equatorial field of 1-3 mT
• Note: the dimensional values may vary

– reflections from MTC, also standing ‘oscillations’, may reveal the radius 
– angular momentum exchanges with the overlying molecular region, 

fluctuating LOD 
– detectable in surface zonal flows beyond the metallic region



Thank you



• MHD dynamos driven by anelastic convection in rotating spherical shells
– adopting the Lantz-Braginsky-Roberts formalism (Lantz & Fan 1999; Braginsky & Roberts   

1995; also Jones+ 2011) 

– dimensionless, governing equations about the reference state:

– with Ekman, kinetic/magnetic Prandtl, and Rayleigh numbers with mid-depth values (Xm):

(1.5-2.5)*10-5 0.1                  3                       O(107)
O(10-18) 0.1-1 O(10-7) 

• Leeds spherical dynamo code: based on pseudo spectral method

Anelastic spherical dynamo simulations
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• questions to this paper

– any potential temporal variations, or any wave motions, excited in deep metallic regions

⇤ which could be seen in Juno’s magnetic data, or possibly in deep atmospheric data

⇤ which could allow us to infer the dynamics of the dynamo region

– explore time variations of Jovian dynamo models

⇤ of theoretical interest, how compressibility changes the picture built by dozen of incom-
pressible Boussinesq models

– particular waves

⇤ can Boussinesq theories be extended to compressible anelastic ones?

2 Numerical simulations

• dynamo simulations (table 1)

– governing equations

⇤ to model the metallic hydrogen region and the overlying molecular hydrogen layer

⇤ anelastic approximation, compressible but omitting sound speeds

⇤ convection is driven mostly?? by internal heating

r · ⇢ u = 0 (1)
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– three models built by Jones (2014): table
1 Pm = 3, Pr = 0.1, 2.5⇥ 10�5 � E � 1.5⇥ 10�5,
a background state of ⇢,� (French et al. 2012),
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